首页> 外文期刊>Advanced engineering informatics >Maximum variation analysis based analytical target cascading for multidisciplinary robust design optimization under interval uncertainty
【24h】

Maximum variation analysis based analytical target cascading for multidisciplinary robust design optimization under interval uncertainty

机译:基于最大变化分析在间隔不确定性下多学科强大设计优化的分析目标级联

获取原文
获取原文并翻译 | 示例

摘要

Analytical target cascading (ATC) is a generally used hierarchical method for deterministic multidisciplinary design optimization (MDO). However, uncertainty is almost inevitable in the lifecycle of a complex system. In engineering practical design, the interval information of uncertainty can be more easily obtained compared to probability information. In this paper, a maximum variation analysis based ATC (MVA-ATC) approach is developed. In this approach, all subsystems are autonomously optimized under the interval uncertainty. MVA is used to establish an outer-inner framework which is employed to find the optimal scheme of system and subsystems. All subsystems are coordinated at the system level to search the system robust optimal solution. The accuracy and validation of the presented approach are tested using a classical mathematical example, a heart dipole optimization problem, and a battery thermal management system (BTMS) design problem.
机译:分析目标级联(ATC)是一种用于确定性多学科设计优化(MDO)的通常使用的分层方法。然而,在复杂系统的生命周期中,不确定性几乎是不可避免的。在工程实践设计中,与概率信息相比,可以更容易地获得不确定度的间隔信息​​。本文开发了基于最大变化分析的ATC(MVA-ATC)方法。在这种方法中,所有子系统都在间隔不确定性下自主优化。 MVA用于建立外部内部框架,该框架被用于找到系统和子系统的最佳方案。所有子系统都在系统级别协调,以搜索系统强大的最佳解决方案。使用经典的数学示例,心偶极优化问题和电池热管理系统(BTMS)设计问题来测试所提出的方法的准确性和验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号