首页> 外文期刊>Advanced engineering informatics >Data-driven operational risk analysis in E-Commerce Logistics
【24h】

Data-driven operational risk analysis in E-Commerce Logistics

机译:电子商务物流数据驱动的运营风险分析

获取原文
获取原文并翻译 | 示例

摘要

The efficiency of E-Commerce Logistics (ECL) has become a major success factor for e-commerce companies in the competitive marketplace nowadays. However, the operation of ECL is complex and vulnerable to many risks, which would severely threaten its performance. A clear understanding of these risks would benefit a lot for conducting targeted measures to effectively mitigate their adverse effects. Therefore, this paper proposes a quantitatively analysis approach for operational risks in ECL based on extensive historical e-commerce transaction data. More specifically, the typical operation process of ECL is extracted through sequential analysis of key activities. After that, taking operation time as the key performance indicator, the performance patterns of different operation phases are analyzed. Then, considering the diverse distributions of operation time in different phases, especially the multimodal distribution of transportation time, a Gaussian Mixture Model (GMM) based risk analysis approach is proposed. Finally, an experimental case study is provided to measure the operational risks using real-life ECL data, and several managerial implications are also discussed based on the results.
机译:电子商务物流(ECL)的效率已成为现今竞争市场中电子商务公司的主要成功因素。但是,ECL的运作是复杂的,易受群体的群体,这将严重威胁其性能。清楚地了解这些风险将有利于进行有针对性的措施,从而有效减轻其不利影响。因此,本文提出了基于广泛的历史电子商务交易数据的ECL中运营风险的定量分析方法。更具体地,通过对关键活动的顺序分析提取ECL的典型操作过程。之后,采取操作时间作为关键性能指标,分析了不同操作阶段的性能模式。然后,考虑不同阶段的操作时间的不同分布,特别是运输时间的多峰分布,提出了基于高斯混合模型(GMM)的风险分析方法。最后,提供了一种实验性案例研究来使用现实生活ECL数据来测量操作风险,并且还基于结果讨论了几个管理含义。

著录项

  • 来源
    《Advanced engineering informatics》 |2019年第4期|29-35|共7页
  • 作者单位

    Harbin Inst Technol Sch Architecture Shenzhen Peoples R China|Harbin Inst Technol Shenzhen Key Lab Urban Planning & Decis Making Intelligent Transportat Lab Shenzhen Peoples R China;

    Hong Kong Univ Sci & Technol Dept Ind Engn & Decis Analyt Hong Kong Peoples R China;

    Tencent AI Lab Shenzhen Peoples R China;

    Zhengzhou Univ Aeronout Sch Management Engn Zhengzhou Henan Peoples R China;

    Univ Hong Kong Dept Ind & Mfg Syst Engn HKU ZIRI Lab Phys Internet Hong Kong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    E-Commerce Logistics; Operational risks; Data analytics; Risk analysis; Gaussian mixture model;

    机译:电子商务物流;运营风险;数据分析;风险分析;高斯混合模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号