首页> 外文期刊>Advanced engineering informatics >Data mining for recognition of spatial distribution patterns of building heights using airborne lidar data
【24h】

Data mining for recognition of spatial distribution patterns of building heights using airborne lidar data

机译:使用机载激光雷达数据识别建筑物高度的空间分布模式的数据挖掘

获取原文
获取原文并翻译 | 示例

摘要

There is an increasing demand for spatial big data visualisation in Geographic Information Systems (GIS) in building construction and urban development. Exploring building height patterns is required to obtain and visualize essential information about spatio-temporal vertical urban developments due to the trends towards increasing building heights in different urban fabrics. While metrics to characterize horizontal patterns of urban fabric using spectral information exist, theoritical-based metrics identifying the patterns of vertical urban developments using height values are still scarce. In addition, there is a lack of reliable methods to analyze height information for modeling the distribution of building heights and to automatically detect three-dimensional urban patterns. In this paper, we propose to apply the spatial statistics of Local Moran's I (LMI), G_i* and Kernel Density Estimation (KDE) on building heights to explore vertical urban patterns through detecting the concentration of relatively higher buildings. The proposed methods were applied on two different airborne lidar point cloud data sets. The results show overall good performance of LMI and Gi* methods compared to KDE. It is also found that there is a higher level of agreement between clusters of relatively higher buildings derived by the autocorrelation statistics of LMI and Gi*, compared with the patterns derived from the Kernel density. For the lower accuracies obtained from the KDE, the authors suggest to use either LMI or Gi* for this kind of study. The spatial closeness of clusters of higher buildings to major roads, defined by the mean distances of the clusters to major roads, were investigated and based on the Analysis of Variance (ANOVA) and Tukey's tests, the mean distances were found to be shorter than for all other buildings. Lastly, an analysis of clusters of the relatively higher buildings showed varying land uses for the two case studies.
机译:在建筑施工和城市发展中,对地理信息系统(GIS)中的空间大数据可视化的需求不断增长。由于不同城市结构中建筑物高度的增加趋势,需要探索建筑物高度模式以获取和可视化有关时空垂直城市发展的基本信息。尽管存在使用光谱信息来表征城市结构水平模式的指标,但仍缺乏基于理论的指标来使用高度值来识别垂直城市发展的模式。另外,缺乏可靠的方法来分析高度信息以对建筑物高度的分布进行建模并自动检测三维城市格局。在本文中,我们建议将Local Moran's I(LMI),G_i *和Kernel Density Estimation(KDE)的空间统计应用于建筑物高度,以通过检测相对较高的建筑物的集中度来探索垂直的城市格局。所提出的方法被应用于两个不同的机载激光雷达点云数据集。结果表明,与KDE相比,LMI和Gi *方法的总体性能良好。还发现,与从内核密度得出的模式相比,通过LMI和Gi *的自相关统计得出的相对较高的建筑物簇之间的一致性更高。对于从KDE获得的较低精度,作者建议使用LMI或Gi *进行此类研究。研究了高层建筑群与主要道路之间的空间接近度(由该群与主要道路之间的平均距离定义),并根据方差分析(ANOVA)和Tukey检验发现,平均距离比标准距离短所有其他建筑物。最后,对较高建筑群的分析表明,这两个案例研究的土地用途各不相同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号