首页> 外文期刊>Advanced engineering informatics >BA-PNN-based methods for power transformer fault diagnosis
【24h】

BA-PNN-based methods for power transformer fault diagnosis

机译:基于BA-PNN的电力变压器故障诊断方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a machine learning-based approach to power transformer fault diagnosis based on dissolved gas analysis (DGA), a bat algorithm (BA), optimizing the probabilistic neural network (PNN). PNN is a radial basis function feedforward neural network based on Bayesian decision theory, which has a strong fault tolerance and significant advantages in pattern classification. However, one challenge still remains: the performance of PNN is greatly affected by its hidden layer element smooth factor which impacts the classification performance. The proposed approach addresses this challenge by deploying the BA algorithm, a kind of bio-inspired algorithm to optimize PNN. Using the real data collected from a transformer system, we conducted the experiments for validating the performance of the developed method. The experimental results demonstrated that BA is an effective algorithm for optimizing PNN smooth factor and BA-PNN can improve the fault diagnosis performance; in turn, and the machine learning-based model (BA-PNN) can significantly enhance the accuracies of power transformer fault diagnosis.
机译:本文提出了一种基于机器学习的电力变压器故障诊断方法,该方法基于溶解气体分析(DGA),蝙蝠算法(BA),优化了概率神经网络(PNN)。 PNN是基于贝叶斯决策理论的径向基函数前馈神经网络,具有很强的容错能力,在模式分类上具有明显的优势。但是,仍然存在一个挑战:PNN的性能受到其隐藏层元素平滑因子的极大影响,这会影响分类性能。所提出的方法通过部署BA算法解决了这一挑战,BA算法是一种生物启发算法来优化PNN。利用从变压器系统收集的真实数据,我们进行了实验,以验证所开发方法的性能。实验结果表明,BA是优化PNN平滑因子的有效算法,BA-PNN可以提高故障诊断性能。反过来,基于机器学习的模型(BA-PNN)可以显着提高电力变压器故障诊断的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号