首页> 外文期刊>Advanced engineering informatics >A generative design technique for exploring shape variations
【24h】

A generative design technique for exploring shape variations

机译:探索形状变化的生成设计技术

获取原文
获取原文并翻译 | 示例

摘要

Because innovative and creative design is essential to a successful product, this work brings the benefits of generative design in the conceptual phase of the product development process so that designers/engineers can effectively explore and create ingenious designs and make better design decisions. We proposed a state-of-the-art generative design technique (GDT), calledSpace-filling-GDT(Sf-GDT), for the creation of innovative designs. The proposed Sf-GDT has the ability to create variant optimal design alternatives for a given computer-aided design (CAD) model. An effective GDT should generate design alternatives that cover the entire design space. Toward that end, the criterion of space-filling is utilized, which uniformly distribute designs in the design space thereby giving a designer a better understanding of possible design options. To avoid creating similar designs, a weighted-grid-search approach is developed and integrated into the Sf-GDT. One of the core contributions of this work lies in the ability of Sf-GDT to explore hybrid design spaces consisting of both continuous and discrete parameters either with or without geometric constraints. A parameter-free optimization technique, called Jaya algorithm, is integrated into the Sf-GDT to generate optimal designs. Three different design parameterization and space formulation strategies; explicit, interactive, and autonomous, are proposed to set up a promising search region(s) for optimization. Two user interfaces; a web-based and a Windows-based, are also developed to utilize Sf-GDT with the existing CAD software having parametric design abilities. Based on the experiments in this study, Sf-GDT can generate creative design alternatives for a given model and outperforms existing state-of-the-art techniques.
机译:由于创新和创意设计对于成功的产品必不可少,因此这项工作在产品开发过程的概念阶段带来了生成设计的好处,因此设计师/工程师可以有效地探索和创建巧妙的设计并做出更好的设计决策。我们提出了一种最先进的生成设计技术(GDT),称为Space-filling-GDT(Sf-GDT),用于创建创新设计。拟议的Sf-GDT具有为给定的计算机辅助设计(CAD)模型创建变型的最佳设计替代方案的能力。有效的GDT应该产生覆盖整个设计空间的设计替代方案。为此,利用了空间填充的标准,该标准将设计均匀地分布在设计空间中,从而使设计人员可以更好地理解可能的设计方案。为了避免创建类似的设计,开发了加权网格搜索方法并将其集成到Sf-GDT中。这项工作的核心贡献之一是Sf-GDT能够探索由连续参数和离散参数组成的,具有或不具有几何约束的混合设计空间的能力。 Sf-GDT中集成了一种称为Jaya算法的无参数优化技术,以生成最佳设计。三种不同的设计参数化和空间制定策略;提出了明确,交互式和自治的建议,以建立有希望的搜索区域进行优化。两个用户界面;还开发了基于Web和Windows的Web,以将Sf-GDT与具有参数设计能力的现有CAD软件一起使用。根据这项研究中的实验,Sf-GDT可以为给定模型生成创新的设计替代方案,并且胜过现有的最新技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号