首页> 外文期刊>Advanced energy materials >Control and Optimization of the Electrochemical and Mechanical Properties of the Solid Electrolyte Interphase on Silicon Electrodes in Lithium Ion Batteries
【24h】

Control and Optimization of the Electrochemical and Mechanical Properties of the Solid Electrolyte Interphase on Silicon Electrodes in Lithium Ion Batteries

机译:锂离子电池硅电极固体电解质相互作用电化学和力学性能的控制与优化

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The formation of the solid electrolyte interphase (SEI) on Si is examined in detail using several in situ techniques. The results show that employing different conditions during the first lithiation cycle produces SEI films with substantially different properties. Longer time at higher potentials produces softer SEI, whereas inorganic phases produced at lower potentials have higher elastic moduli. The SEI thickness stabilizes during the first cycle; however, the SEI resistance decreases during the first 20 cycles (in sharp contrast to typical surface passivation processes, where resistance is expected to increase with time). This behavior is consistent with the slow growth of inorganic constituents at lower potentials, inside of a mesoporous soft SEI that initially forms at higher potentials. This interpretation is based on the premise that these inorganic phases have a lower resistivity than that associated with electrolyte transport through the mesoporous organic phase. Based on this set of observations, the multiphase structure that evolves during initial cycling determines critical electrochemical and mechanical properties of the SEI. A basic model of these tradeoffs is proposed to provide guidelines for creating more stable interfacial films.
机译:使用几种原位技术详细检查Si上的固体电解质间(SEI)的形成。结果表明,在第一锂化循环期间采用不同的条件产生具有基本上不同的性质的SEI膜。在较高潜力的更长的时间产生Softer Sei,而在较低电位下产生的无机相具有更高的弹性模量。 SEI厚度在第一周期期间稳定;然而,在前20个循环期间,SEI电阻减小(与典型的表面钝化过程鲜明对比,预期电阻随时间增加)。这种行为与较低电位下的无机成分的缓慢生长一致,在初始孔的软SEI内部,最初在较高潜力处形成。该解释基于这些无机相具有较低的电阻率,所述电阻率低于通过中孔有机相的电解质传输。基于这组观察,在初始循环期间演化的多相结构决定了SEI的关键电化学和机械性能。提出了这些权衡的基本模型,以提供创造更稳定的界面薄膜的指导。

著录项

  • 来源
    《Advanced energy materials》 |2016年第8期|1502302.1-1502302.12|共12页
  • 作者单位

    Brown Univ Sch Engn Providence RI 02912 USA;

    Brown Univ Sch Engn Providence RI 02912 USA;

    Bruker Nano Surfaces 112 Robin Hill Rd Goleta CA 93117 USA;

    Bruker Nano Surfaces 112 Robin Hill Rd Goleta CA 93117 USA;

    Gen Motors Global R& D Ctr 30500 Mound Rd Warren MI 48090 USA;

    Brown Univ Sch Engn Providence RI 02912 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号