首页> 美国卫生研究院文献>Nature Communications >Controlling electric potential to inhibit solid-electrolyte interphase formation on nanowire anodes for ultrafast lithium-ion batteries
【2h】

Controlling electric potential to inhibit solid-electrolyte interphase formation on nanowire anodes for ultrafast lithium-ion batteries

机译:控制电位以抑制超快锂离子电池纳米线阳极上的固体电解质界面形成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With increasing demand for high-capacity and rapidly rechargeable anodes, problems associated with unstable evolution of a solid-electrolyte interphase on the active anode surface become more detrimental. Here, we report the near fatigue-free, ultrafast, and high-power operations of lithium-ion battery anodes employing silicide nanowires anchored selectively to the inner surface of graphene-based micro-tubular conducting electrodes. This design electrically shields the electrolyte inside the electrode from an external potential load, eliminating the driving force that generates the solid-electrolyte interphase on the nanowire surface. Owing to this electric control, a solid-electrolyte interphase develops firmly on the outer surface of the graphene, while solid-electrolyte interphase-free nanowires enable fast electronic and ionic transport, as well as strain relaxation over 2000 cycles, with 84% capacity retention even at ultrafast cycling (>20C). Moreover, these anodes exhibit unprecedentedly high rate capabilities with capacity retention higher than 88% at 80C (vs. the capacity at 1C).
机译:随着对高容量和可快速充电的阳极的需求增加,与在活性阳极表面上固体电解质中间相的不稳定发展有关的问题变得更加有害。在这里,我们报告了锂离子电池阳极的近乎无疲劳,超快和高功率的运行,这些阳极采用选择性锚固在石墨烯基微管导电电极内表面的硅化物纳米线。这种设计可将电极内部的电解质与外部电位电隔离,从而消除了在纳米线表面产生固态电解质界面的驱动力。由于这种电气控制,固体电解质间相牢固地在石墨烯的外表面上形成,而无固体电解质间相的纳米线可实现快速的电子和离子传输,并在2000次循环中实现应变松弛,并保持84%的容量即使是超快速循环(> 20C)。而且,这些阳极展现出空前的高倍率容量,在80C时的容量保持率高于88%(相对于1C时的容量)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号