首页> 外文学位 >The structural and electrochemical dynamics of the electrode-electrolyte interphase of metal fluoride nanocomposite positive electrodes for lithium batteries.
【24h】

The structural and electrochemical dynamics of the electrode-electrolyte interphase of metal fluoride nanocomposite positive electrodes for lithium batteries.

机译:锂电池用金属氟化物纳米复合正电极的电极-电解质中间相的结构和电化学动力学。

获取原文
获取原文并翻译 | 示例

摘要

Metal fluorides are attractive for use as positive electrodes in Li and Li-ion batteries because of their high gravimetric and volumetric energy densities. When synthesized into nanocomposites, these materials undergo conversion reactions and exhibit near theoretical specific capacity and good rate capability. Despite these positive attributes, metal fluorides nanocomposites generally exhibit unacceptable rates of capacity loss during cycling. This stands as a significant barrier to their realization as a viable battery technology. This thesis explored a candidate material, BiF3, and for the first time, the mechanisms by which metal fluoride nanocomposite positive electrode materials fail during cycling have been investigated. The chemistry of the electrode / electrolyte interface and its influence on the BiF3 material were of greatest interest.;Early in the course of study, it was discovered that the Bi0 metal produced through the discharge reaction of BiF3 was a catalytically active site for the electrochemical reduction of ethylene carbonate (EC) at potentials exceeding 2 V vs. Li/Li+. This potential range is well above the values typically observed on carbonaceous negative electrodes on which preferential reduction of electrolyte species yields insoluble phases. These ionically conducting layers are deemed solid-electrolyte interphases (SEI), and in the case of carbonaceous materials, they are necessary for enabling functionality of the electrode and preventing deleterious interactions with the electrolyte. Thorough electrochemical and spectroscopic examinations identified Li2CO3 as the predominant SEI species formed on Bi0 from EC. In stark contrast to carbonaceous materials, the presence of SEI on Bi0 was detrimental to the cycling performance of BiF3. Elaboration of this topic identified instability of the SEI during the charging process of the BiF3 and the formation of BiOxF3-2x in the fully charged state.;Electrolytes composed of linear organic carbonates, as opposed to cyclic organic carbonates, did not exhibit SEI formation, and a distinct improvement in the cycling performance of BiF3 nanocomposites was observed. Extending this concept, other straight-chained solvents including dinitriles and 3-alkoxypropionitriles were formulated into novel electrolytes with low additive concentrations. After proving their stability and functionality in a 4 V Li-ion configuration, these nitrile electrolytes were investigated with BiF3 nanocomposites. To date, the best long-term cycling performance of a BiF3 nanocomposite has been achieved using a dinitrile electrolyte.;The findings of this dissertation merit consideration of SEI formation in other metal fluoride conversion systems. The experimental designs serve as a platform for the exploration of the potentially complex and dynamic interactions of the electrolyte with metal fluoride nanocomposite electrodes during cycling.
机译:金属氟化物因其高的重量和体积能量密度而吸引人们用作锂和锂离子电池的正极。当合成为纳米复合材料时,这些材料会发生转化反应,并显示出接近理论的比容量和良好的速率容量。尽管具有这些积极的特性,但金属氟化物纳米复合材料通常在循环期间表现出不可接受的容量损失率。这成为将其实现为可行的电池技术的重要障碍。本文探索了一种候选材料BiF3,并首次研究了金属氟化物纳米复合正极材料在循环过程中失效的机理。电极/电解质界面的化学性质及其对BiF3材料的影响是最受关注的;;在研究过程的早期,发现通过BiF3的放电反应产生的Bi0金属是电化学的催化活性位点。与Li / Li +相比,在超过2 V的电势下碳酸亚乙酯(EC)的还原。该电势范围远高于通常在碳质负极上观察到的值,在碳质负极上,优先减少电解质种类会产生不溶相。这些离子导电层被认为是固体电解质中间相(SEI),在碳质材料的情况下,它们对于启用电极的功能以及防止与电解质的有害相互作用是必需的。彻底的电化学和光谱检查确定Li2CO3是EC上Bi0上形成的主要SEI物种。与碳质材料形成鲜明对比的是,Bi0上SEI的存在不利于BiF3的循环性能。对该主题的详细说明确定了BiF3充电过程中SEI的不稳定性以及充满电状态下BiOxF3-2x的形成。与环状有机碳酸酯相反,由线性有机碳酸盐组成的电解质没有SEI的形成,并观察到BiF3纳米复合材料的循环性能有明显改善。扩展了这个概念,其他直链溶剂,包括二腈和3-烷氧基丙腈,被配制成添​​加剂浓度低的新型电解质。在证明其在4 V锂离子配置中的稳定性和功能性后,使用BiF3纳米复合材料研究了这些腈电解质。迄今为止,使用二腈电解质已经实现了BiF3纳米复合材料的最佳长期循环性能。该论文的发现值得考虑在其他金属氟化物转化系统中形成SEI。实验设计为探索电解质在循环过程中与金属氟化物纳米复合电极的潜在复杂和动态相互作用提供了平台。

著录项

  • 作者

    Gmitter, Andrew John.;

  • 作者单位

    Rutgers The State University of New Jersey - New Brunswick.;

  • 授予单位 Rutgers The State University of New Jersey - New Brunswick.;
  • 学科 Chemistry Inorganic.;Nanotechnology.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 250 p.
  • 总页数 250
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号