...
首页> 外文期刊>Advanced energy materials >Boosting the Performance of WO_3-Si Heterostructures for Photoelectrochemical Water Splitting: from the Role of Si to Interface Engineering
【24h】

Boosting the Performance of WO_3-Si Heterostructures for Photoelectrochemical Water Splitting: from the Role of Si to Interface Engineering

机译:促进了光电化学水分解的WO_3 / N-Si异质结构的性能:从Si到界面工程的作用

获取原文
获取原文并翻译 | 示例

摘要

Metal oxide/Si heterostructures make up an exciting design route to high-performance electrodes for photoelectrochemical (PEC) water splitting. By monochromatic light sources, contributions of the individual layers in WO3-Si heterostructures are untangled. It shows that band bending near the WO3-Si interface is instrumental in charge separation and transport, and in generating a photovoltage that drives the PEC process. A thin metal layer inserted at the WO3-Si interface helps in establishing the relation among the band bending depth, the photovoltage, and the PEC activity. This discovery breaks with the dominant Z-scheme design idea, which focuses on increasing the conductivity of an interface layer to facilitate charge transport, but ignores the potential profile around the interface. Based on the analysis, a high-work-function metal is predicted to provide the best interface layer in WO3-Si heterojunctions. Indeed, the fabricated WO3/Pt-Si photoelectrodes exhibit a 2 times higher photocurrent density at 1.23 V versus reversible hydrogen electrode (RHE) and a 10 times enhancement at 1.6 V versus RHE compared to WO3-Si. Here, it is essential that the native SiO2 layer at the interface between Si and the metal is kept in order to prevent Fermi level pinning in the Schottky contact between the Si and the metal.
机译:金属氧化物/ SI异质结构构成了光电化学(PEC)水分裂的高性能电极的令人兴奋的设计途径。通过单色光源,WO3 / N-Si异质结构中各个层的贡献未被缠结。它显示WO3 / N-SI接口附近的带弯曲是电荷分离和运输的仪器,以及产生驱动PEC工艺的光伏。插入WO3 / N-Si界面的薄金属层有助于建立带弯曲深度,光电电压和PEC活动之间的关系。这一发现与主导Z方案设计理念突破,专注于增加接口层的电导率,以便于充电传输,但忽略界面周围的潜在配置文件。基于分析,预测高功函数金属在WO3 / N-Si异质结中提供最佳界面层。实际上,制造的WO3 / PT / N-Si光电电极表现出较高的光电流密度为1.23V与可逆氢电极(RHE)的2倍,与WO3 / N-Si相比,1.6V与Rhe的增强10倍。这里,必须保持Si和金属界面处的天然SiO2层,以防止Fermi水平钉在Si和金属之间的肖特基接触中。

著录项

  • 来源
    《Advanced energy materials 》 |2019年第26期| 1900940.1-1900940.11| 共11页
  • 作者单位

    Dutch Inst Fundamental Energy Res DIFFER EMI YL-5600 HH Eindhoven Netherlands;

    Eindhoven Univ Technol Dept Appl Phys Ctr Computat Energy Res POB 513 NL-5600 MB Eindhoven Netherlands|Univ Twente Fac Sci & Technol Computat Mat Sci POB 217 NL-7500 AE Enschede Netherlands|Univ Twente MESA Inst Nanotechnol POB 217 NL-7500 AE Enschede Netherlands;

    Dutch Inst Fundamental Energy Res DIFFER EMI YL-5600 HH Eindhoven Netherlands;

    Eindhoven Univ Technol Dept Appl Phys Phys Nanostruct FNA POB 513 NL-5600 MB Eindhoven Netherlands;

    Eindhoven Univ Technol Dept Appl Phys PMP POB 513 NL-5600 MB Eindhoven Netherlands;

    Dutch Inst Fundamental Energy Res DIFFER EMI YL-5600 HH Eindhoven Netherlands;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    PEC water splitting; photovoltages; Si; WO3; n-Si;

    机译:PEC水分裂;光伏;Si;WO3;N-SI;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号