首页> 外文学位 >The Study of Semiconductor Heterostructures for Photocatalysis and Photoelectrochemical Water Splitting.
【24h】

The Study of Semiconductor Heterostructures for Photocatalysis and Photoelectrochemical Water Splitting.

机译:用于光催化和光电化学水分解的半导体异质结构的研究。

获取原文
获取原文并翻译 | 示例

摘要

Activated carbon, graphene, carbon nanotubes and fullerene were incorporated into TiO2 to produce carbon-based TiO2 hybrid nanostructures by a solvothermal approach and thermal annealing. The superiority in photocatalytic activities of this carbon-based TiO2 samples on the RhB molecules orignated from the excellent adsorption property, favourable chemical bond formation (Ti-O-C), narrower bandgap, smaller particle size and effective charge carriers separation of the nanocomposites. In a related work, ultra-small Ag nanocrystallites-decorated TiO2 hollow sphere heterostructures were prepared which showed excellent photodegradation performance for RhB. In this metal-semiconductor heterostructures, the Ag nanocrystallites with high crystallinity reduced the recombination rate of charge carriers and favoured the charge transfer across the interfaces. The increased adsorbed surface oxygen, upward shift of Fermi level and increased electron density due to coupling of Ag had contributed to the charge transfer and improvement of quantum efficiency. Furthermore to the study of photocatalytic composites, porous graphitic carbon nitride was synthesized by the controllable thermal polymerization of urea in air. The textural, electrical and optical properties of the samples were tuned by varying the heating rate. In a related work, MoS2 nanosheets were coupled into the carbon nitride to form MoS 2/C3N4 heterostructures samples whose kinetic rate was 3.6 times faster than that of bare carbon nitride. As analyzed by SEM, TEM, UV-Vis absorption, PL and photoelectrochemical measurements, the intimate contact interface, extended light response range, enhanced separation speed of charge carriers and the high photocurrent density upon MoS2 coupling were the major factors to the photocatalytic promotion while using MoS2/C3N4 heterostructures. This thesis also reported the fabrication of Ni(OH)2/Ti-Fe2O 3 photoanode by a two-step hydrothermal method for the use in water splitting. It was found that Ti doping had promoted the photovoltage of hematite by surface modification rather than increasing the donor density, while the loading of Ni(OH)2 had further improved the photoelectrochemical performance of Ti-Fe2O3 by reducing both the over-potential of oxygen evolution reaction and the recombination rate of the charge carriers. Another than the Ni(OH)2 loading, the water splitting performance of hematite could also be improved via surface engineering by using CTAB. It was found that the CTAB-Fe2O3 had promoted the photocurrent of pristine hematite by two times at 1.23 V vs. RHE. The increase in carrier&
机译:通过溶剂热法和热退火将活性炭,石墨烯,碳纳米管和富勒烯掺入TiO2中,以生产碳基TiO2杂化纳米结构。这种碳基TiO2样品在RhB分子上具有优异的光催化活性,这归因于纳米复合材料的优异吸附性能,有利的化学键形成(Ti-O-C),窄带隙,较小粒径和有效的载流子分离。在相关的工作中,制备了超小的Ag纳米晶修饰的TiO2中空球异质结构,该结构显示出对RhB优异的光降解性能。在这种金属-半导体异质结构中,具有高结晶度的Ag纳米微晶降低了电荷载流子的复合率,并有利于跨界面的电荷转移。由于Ag的耦合,增加的吸附表面氧,费米能级的向上移动和电子密度的增加有助于电荷转移和量子效率的提高。除光催化复合材料的研究外,还通过尿素在空气中的可控热聚合反应制备了多孔石墨氮化碳。通过改变加热速率来调整样品的质地,电学和光学性质。在相关工作中,将MoS2纳米片耦合到氮化碳中以形成MoS 2 / C3N4异质结构样品,其动力学速率比裸碳氮化物快3.6倍。通过SEM,TEM,UV-Vis吸收,PL和光电化学测量进行分析,紧密接触界面,扩展的光响应范围,提高的电荷载流子分离速度以及MoS2耦合时的高光电流密度是促进光催化的主要因素,而使用MoS2 / C3N4异质结构。本文还报道了通过两步水热法制备Ni(OH)2 / Ti-Fe2O 3光电阳极用于水分解。发现钛掺杂通过表面改性而不是增加施主密度来促进赤铁矿的光电压,而Ni(OH)2的负载通过减少氧的超电势进一步改善了Ti-Fe2O3的光电化学性能。析出反应和载流子的复合速率。除使用Ni(OH)2负载外,还可以通过使用CTAB进行表面工程来改善赤铁矿的水分解性能。发现相对于RHE,CTAB-Fe 2 O 3在1.23V下将原始赤铁矿的光电流提高了两倍。运营商的增长

著录项

  • 作者

    Li, Qian.;

  • 作者单位

    The Chinese University of Hong Kong (Hong Kong).;

  • 授予单位 The Chinese University of Hong Kong (Hong Kong).;
  • 学科 Materials science.;Energy.;Environmental science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号