首页> 外文学位 >Studies on the electrochemical synthesis and modification of semiconductor photoanodes for improved photoelectrochemical water splitting.
【24h】

Studies on the electrochemical synthesis and modification of semiconductor photoanodes for improved photoelectrochemical water splitting.

机译:半导体光阳极的电化学合成和修饰以改善光电化学水分解的研究。

获取原文
获取原文并翻译 | 示例

摘要

Solar energy conversion offers the potential to power the planet using the 3.8 x 1026 J/h of power the sun offers everyday. Although only a small portion of the sun's energy hits the surface of the earth (3x10 -8 percent), one hour of that energy is capable of meeting the current demand for energy in a year. Utilizing the suns energy requires effective means of harvesting solar photons and storing the collected energy. One device capable of accomplishing both tasks is a photoelectrochemical cell (PEC) designed to split water, which can absorb solar photons and store the energy in the chemical bonds of H2 and O2. However, no one material has yet been able to effectively accomplish both the reduction and oxidation of water for a PEC. One possible solution is to design a photoelectrochemical diode which cuts the overall water splitting reaction into two half reactions using a p-type material as the photocathode to reduce water and an n-type material as the photoanode to oxidize water. Though the production of H2 is the more desirable product the oxygen evolution reaction (OER) is the more kinetically limiting reaction and can hinder production of H2. Therefore effective photoanode materials need to be studied. This work focuses on the development of electrochemical synthesis routes and surface modifications of semiconductor photoanode materials to improve their photocatalytic properties towards water oxidation.;Fe2O3 photoanodes were modified by photodepositing a Co-phosphate oxygen evolution catalyst (Co-Pi OEC) onto the surface using two different circuit conditions. The addition of Co-Pi OEC improved surface kinetics towards OER resulting in improved photocurrent. The surface of Fe 2O3 photoanodes was also modified using a simple solution thermal treatment to convert the surface of the Fe2O3 electrode to ZnFe2O4, another n-type material. The formation of the Fe2O3/ZnFe2O4 composite electrode demonstrated enhanced photocurrent compared to Fe2O 3 alone.;BiVO4 photoanodes were prepared via a simple solution thermal treatment of BiOI that were electrodeposited for the first time by a cathodic method. When combined with FeOOH as an oxygen evolution catalyst (OEC) the BiVO4/FeOOH demonstrated remarkable photocurrent properties with little applied bias. FeOOH was also cathodically electrodeposited for the first time from a near neutral medium. The resulting electrodes were tested as an OEC and as a template for the formation of both photoanode and photocathode materials. Lastly, a series of copper hydroxyl double salt (CHDS) electrodes were cathodically electrodeposited, many of them for the first time. Although not known as photoanode materials, CHDSs have a unique layered structure that can be used as an ion exchange material which was tested and will be discussed.
机译:太阳能转换提供了利用太阳每天提供的3.8 x 1026 J / h功率为行星供电的潜力。尽管只有一小部分的太阳能量撞击地球表面(3x10 -8%),但是一小时的能量就能满足一年中当前对能量的需求。利用太阳能量需要有效的手段来收集太阳光子并存储收集的能量。能够完成两项任务的一种设备是设计用于分解水的光电化学电池(PEC),它可以吸收太阳光子并将能量存储在H2和O2的化学键中。然而,还没有一种材料能够有效地完成用于PEC的水的还原和氧化。一种可能的解决方案是设计一种光电化学二极管,将p型材料用作光阴极以还原水,将n型材料用作光阳极以将水氧化,从而将整个水分解反应分为两个半反应。尽管H2的产生是更理想的产物,但氧释放反应(OER)是更具动力学限制的反应,可能会阻碍H2的产生。因此,需要研究有效的光阳极材料。这项工作的重点是开发半导体光阳极材料的电化学合成路线和表面改性,以改善其对水氧化的光催化性能。两种不同的电路条件。 Co-Pi OEC的添加改善了面向OER的表面动力学,从而改善了光电流。还可以使用简单的固溶热处理对Fe 2O3光电阳极的表面进行修饰,以将Fe2O3电极的表面转换为另一种n型材料ZnFe2O4。与单独的Fe2O 3相比,Fe2O3 / ZnFe2O4复合电极的形成显示出更高的光电流。当与FeOOH作为放氧催化剂(OEC)结合使用时,BiVO4 / FeOOH表现出显着的光电流特性,几乎没有施加偏压。 FeOOH也是从一种接近中性的介质中首次进行阴极电沉积。测试所得电极作为OEC和模板,以形成光阳极和光阴极材料。最后,一系列阴极铜电沉积了双羟基铜(CHDS)电极,其中许多是第一次。尽管不被称为光阳极材料,但CHDS具有独特的分层结构,可以用作经过测试并将讨论的离子交换材料。

著录项

  • 作者

    McDonald, Kenneth James.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Chemistry Inorganic.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号