首页> 外文期刊>Advanced energy materials >Suppressed Deep Traps and Bandgap Fluctuations in Cu_2CdSnS_4 Solar Cells with ≈8% Efficiency
【24h】

Suppressed Deep Traps and Bandgap Fluctuations in Cu_2CdSnS_4 Solar Cells with ≈8% Efficiency

机译:抑制Cu_2CdSnS_4太阳能电池的深陷阱和带隙波动,效率约8%

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The identification of performance-limiting factors is a crucial step in the development of solar cell technologies. Cu2ZnSn(S,Se)(4)-based solar cells have shown promising power conversion efficiencies in recent years, but their performance remains inferior compared to other thin-film solar cells. Moreover, the fundamental material characteristics that contribute to this inferior performance are unclear. In this paper, the performance-limiting role of deep-trap-level-inducing 2Cu(Zn)+Sn-Zn defect clusters is revealed by comparing the defect formation energies and optoelectronic characteristics of Cu2ZnSnS4 and Cu2CdSnS4. It is shown that these deleterious defect clusters can be suppressed by substituting Zn with Cd in a Cu-poor compositional region. The substitution of Zn with Cd also significantly reduces the bandgap fluctuations, despite the similarity in the formation energy of the Cu-Zn+Zn-Cu and Cu-Cd+Cd-Cu antisites. Detailed investigation of the Cu2CdSnS4 series with varying Cu/[Cd+Sn] ratios highlights the importance of Cu-poor composition, presumably via the presence of V-Cu, in improving the optoelectronic properties of the cation-substituted absorber. Finally, a 7.96% efficient Cu2CdSnS4 solar cell is demonstrated, which shows the highest efficiency among fully cation-substituted absorbers based on Cu2ZnSnS4.
机译:性能限制因素的识别是太阳能电池技术发展的关键步骤。近年来,基于Cu2ZnSn(S,Se)(4)的太阳能电池显示出有希望的功率转换效率,但与其他薄膜太阳能电池相比,它们的性能仍然较差。此外,不清楚导致这种劣质性能的基本材料特性。通过比较Cu2ZnSnS4和Cu2CdSnS4的缺陷形成能和光电特性,揭示了深陷阱能级诱导的2Cu(Zn)+ Sn-Zn缺陷簇的性能限制作用。结果表明,通过在贫铜组成区域中用Cd取代Zn可以抑制这些有害的缺陷簇。尽管Cu-Zn + Zn-Cu和Cu-Cd + Cd-Cu反位点的形成能量相似,但用Cd取代Zn也会显着降低带隙波动。对具有变化的Cu / [Cd + Sn]比的Cu2CdSnS4系列进行的详细研究表明,可能是由于V-Cu的存在,贫铜成分在改善阳离子取代吸收剂的光电性能方面的重要性。最后,展示了效率为7.96%的Cu2CdSnS4太阳能电池,在基于Cu2ZnSnS4的完全阳离子取代的吸收剂中显示出最高的效率。

著录项

  • 来源
    《Advanced energy materials》 |2019年第45期|1902509.1-1902509.11|共11页
  • 作者单位

    Nanyang Technol Univ Sch Mat Sci & Engn Singapore 639798 Singapore|Nanyang Technol Univ ERI N Singapore 637553 Singapore|Nanyang Technol Univ Interdisciplinary Grad Sch Singapore 637371 Singapore;

    Helmholtz Zentrum Mat & Energie Dept Struct & Dynam Energy Mat D-14109 Berlin Germany;

    Princeton Univ Dept Mech & Aerosp Engn Princeton NJ 08544 USA;

    Univ Florida Dept Chem Engn Gainesville FL 32611 USA;

    Catalonia Inst Energy Res IREC Jardin Dones Negre 1 Barcelona 08930 Spain;

    Princeton Univ Sch Engn & Appl Sci Princeton NJ 08544 USA|Univ Calif Los Angeles Off Chancellor Los Angeles CA 90095 USA|Univ Calif Los Angeles Dept Chem & Biomol Engn Los Angeles CA 90095 USA;

    Nanyang Technol Univ Sch Mat Sci & Engn Singapore 639798 Singapore|Nanyang Technol Univ ERI N Singapore 637553 Singapore|CREATE 1 Create Way Singapore 139602 Singapore;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    antisite defects; bandgap fluctuations; CZTS; DFT; kesterite;

    机译:反位缺陷;带隙波动;CZTS;DFT;钾长石;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号