...
首页> 外文期刊>Advanced energy materials >Origin of Degradation in Si-Based All-Solid-State Li-Ion Microbatteries
【24h】

Origin of Degradation in Si-Based All-Solid-State Li-Ion Microbatteries

机译:硅基全固态锂离子微电池的降解起源

获取原文
获取原文并翻译 | 示例

摘要

Like all rechargeable battery systems, conventional Li-ion batteries (LIB) inevitably suffer from capacity losses during operation. This also holds for all-solid-state LIB. In this contribution an in operando neutron depth profiling method is developed to investigate the degradation mechanism of all-solid-state, thin film Si-Li3PO4-LiCoO2 batteries. Important aspects of the long-term degradation mechanisms are elucidated. It is found that the capacity losses in these thin film batteries are mainly related to lithium immobilization in the solid-state electrolyte, starting to grow at the anode/electrolyte interface during initial charging. The Li-immobilization layer in the electrolyte is induced by silicon penetration from the anode into the solid-state electrolyte and continues to grow at a lower rate during subsequent cycling. X-ray photoelectron spectroscopy depth profiling and transmission electron microscopy analyses confirm the formation of such immobilization layer, which favorably functions as an ionic conductor for lithium ions. As a result of the immobilization process, the amount of free moveable lithium ions is reduced, leading to the pronounced storage capacity decay. Insights gained from this research shed interesting light on the degradation mechanisms of thin film, all-solid-state LIB and facilitate potential interfacial modifications which finally will lead to substantially improved battery performance.
机译:像所有可再充电电池系统一样,传统的锂离子电池(LIB)在操作过程中不可避免地会遭受容量损失。这也适用于全固态LIB。在这一贡献中,开发了一种操作中子深度剖析方法,以研究全固态薄膜Si-Li3PO4-LiCoO2电池的降解机理。阐明了长期降解机制的重要方面。已经发现,这些薄膜电池的容量损失主要与固态电解质中的锂固定化有关,锂在初始充电期间开始在阳极/电解质界面处生长。电解质中的Li固定层是由硅从阳极渗透到固态电解质中引起的,并在随后的循环中继续以较低的速率生长。 X射线光电子能谱深度剖析和透射电子显微镜分析证实了这种固定层的形成,该固定层有利地用作锂离子的离子导体。固定过程的结果是,自由移动的锂离子的量减少,导致显着的存储容量下降。从这项研究中获得的见解为薄膜,全固态LIB的降解机理提供了有趣的启示,并促进了潜在的界面改性,最终将导致电池性能的大幅提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号