首页> 外文期刊>Ad-hoc & sensor wireless networks >Adaptive Cross-Layer Optimization Using MIMO Fuzzy Control System in Ad-hoc Networks
【24h】

Adaptive Cross-Layer Optimization Using MIMO Fuzzy Control System in Ad-hoc Networks

机译:ad-hoc网络中使用MIMO模糊控制系统的自适应跨层优化

获取原文
获取原文并翻译 | 示例

摘要

Due to quick and inexpensive deployment, decentralized wireless ad-hoc networks have many potential application domains. However, stringent resource constraints, user mobility, limited channel capacity and high error rate of packets received at the wireless network interfaces make the design and optimization of these networks a challenging task. To solve these issues involving different layers of the protocol stack, we propose a multivariable Fuzzy Logic based Cross-Layer Optimization (FLCLO) Algorithm. In this algorithm, multiple parameters from various layers are given as inputs to a fuzzy logic controller. In fuzzy multi-attribute decision making framework, several distinctive parameters with inherent uncertainties in practical wireless communication scenarios are efficiently characterized by the fuzzy linguistic information. The fuzzy logic optimization technique developed here makes decisions by simultaneously considering multiple criteria that affect network performance in terms of packets per second, number of packets lost, throughput, mean SNIR and number of collisions. The performance of the proposed crosslayer fuzzy algorithm is evaluated by conducting simulations in OMNeT++ with dynamic fuzzy logic system embedded on it. The experimental results obtained from the simulation show that FLCLO used for selecting an efficient next-hop node performs better in terms of reducing the average MAC delay, energy spent on packet transmissions, and packet error rate. A comparative analysis of FLCLO with the media access algorithm used by the original IEEE 802.11 protocol shows that FLCLO is 52-68% more energy-efficient, has 45% lower MAC delay and reduces the packet error rate by 71%. In addition, it guarantees a lower collision rate and reduced packet loss ratio when compared with the conventional IEEE 802.11 ad-hoc routing model in the same set up. Finally, the simulation results demonstrate that our algorithm offers considerable performance enhancement in terms of mitigated packet loss ratio, mean delay, and energy consumption in contrast to the previous related works existing in literature.
机译:由于快速且廉价的部署,分散的无线ad-hoc网络具有许多潜在的应用域。然而,严格的资源约束,用户移动性,有限的信道容量和无线网络接口接收的分组的高差错率,使得这些网络的设计和优化成为一个具有挑战性的任务。为了解决涉及协议栈的不同层的这些问题,我们提出了一种基于多变量的模糊逻辑的跨层优化(FLCLO)算法。在该算法中,将来自各个层的多个参数作为模糊逻辑控制器的输入给出。在模糊多属性决策框架中,通过模糊语言信息有效地表征了具有实际无线通信场景中固有的不确定性的几个独特参数。这里开发的模糊逻辑优化技术通过同时考虑在每秒数据包中影响网络性能的多个标准,丢失的数据包数量,吞吐量,均值且碰撞次数。通过嵌入动态模糊逻辑系统进行omnet ++的模拟来评估所提出的跨候模糊算法的性能。从模拟中获得的实验结果表明,用于选择有效的下跳节点的FLCLO在减少分组传输上的平均MAC延迟,能量和分组错误率方面更好地表现更好。 FLCLO与原始IEEE 802.11协议使用的媒体访问算法的比较分析表明,FLCLO比节能更高的52-68%,具有45%的MAC延迟,并将数据包错误率降低71%。此外,与传统IEEE 802.11 Ad-hoc路由模型相比,它可以保证较低的碰撞速率和降低的丢包比。最后,模拟结果表明,我们的算法在与文献中存在的先前相关工程相比,在减少的零件丢失比率,平均延迟和能量消耗方面提供了相当大的性能增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号