首页> 外文期刊>Ad-hoc & sensor wireless networks >Acoustic Emission Sensor Network Based Fault Diagnosis of Induction Motors Using a Gabor Filter and Multiclass Support Vector Machines
【24h】

Acoustic Emission Sensor Network Based Fault Diagnosis of Induction Motors Using a Gabor Filter and Multiclass Support Vector Machines

机译:基于Gabor滤波器和多类支持向量机的基于声发射传感器网络的异步电动机故障诊断

获取原文
获取原文并翻译 | 示例

摘要

Reliable and efficient fault diagnosis of induction motors is an important issue in industrial environments. This paper proposes a method for reliable fault diagnosis of induction motors using signal processing of acoustic emission (AE) data, including Gabor filtering and the use of multiclass support vector machines (MCSVMs), where a ZigBee based wireless sensor network (WSN) model is used for efficiently transmitting AE signals to a diagnosis server. In the proposed fault diagnosis approach, the induction motor's different state signals are acquired through proper placement of AE sensors. The AE data are sent to a server through the wireless sensor network and decomposed using discrete wavelet transformation (DWT). An appropriate band is then selected using the maximum energy ratio, and a one-dimensional (1D) Gabor filter with various frequencies and orientation angles is applied to reduce abnormalities and extract various statistical parameters for generating features. In addition, principal component analysis (PCA) is applied to the extracted features to select the most dominant feature dimensions. Finally, one-against-one multiclass support vector machines (OAA-MCSVMs) are used to classify multiple fault types of an induction motor, where each SVM individually trains with its own features to increase the fault classification accuracy of the induction motor. In experiments, the proposed approach achieved an average classification accuracy of 99.80%, outperforming conventional fault diagnosis models.
机译:可靠,高效的感应电动机故障诊断是工业环境中的重要问题。本文提出了一种利用声发射(AE)数据的信号处理(包括Gabor滤波)和使用多类支持向量机(MCSVM)来对感应电动机进行可靠的故障诊断的方法,其中基于ZigBee的无线传感器网络(WSN)模型是用于将AE信号有效传输到诊断服务器。在提出的故障诊断方法中,感应电机的不同状态信号是通过适当放置AE传感器来获取的。 AE数据通过无线传感器网络发送到服务器,并使用离散小波变换(DWT)进行分解。然后使用最大能量比选择合适的频带,并应用具有各种频率和方向角的一维(1D)Gabor滤波器来减少异常并提取各种统计参数以生成特征。此外,将主成分分析(PCA)应用于提取的特征以选择最主要的特征维。最后,使用一对一的多类支持向量机(OAA-MCSVMs)对感应电动机的多种故障类型进行分类,其中每个SVM均以其自身的特征进行单独训练,以提高感应电动机的故障分类精度。在实验中,该方法的平均分类准确率达到了99.80%,优于传统的故障诊断模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号