首页> 外文期刊>Ad hoc networks >Interest-aware energy collection & resource management in machine to machine communications
【24h】

Interest-aware energy collection & resource management in machine to machine communications

机译:机器对机器通信中的兴趣感知能量收集和资源管理

获取原文
获取原文并翻译 | 示例

摘要

The emerging paradigm of Machine to Machine (M2M)-driven Internet of Things (IoT), where physical objects are not disconnected from the virtual world but aim at collectively provide contextual services, calls for enhanced and more energy-efficient resource management approaches. In this paper, the problem is addressed through a joint interest, physical and energy-aware clustering and resource management framework, capitalizing on the wireless powered communication (WPC) technique. Within the proposed framework the numerous M2M devices initially form different clusters based on the low complexity Chinese Restaurant Process (CRP), properly adapted to account for interest, physical and energy related factors. Following that, a cluster-head is selected among the members of each cluster. The proposed approach enables the devices of a cluster with the support of the cluster-head to harvest and store energy in a stable manner through Radio Frequency (RF) signals adopting the WPC paradigm, thus prolonging the operation of the overall M2M network. Each M2M device is associated with a generic utility function, which appropriately represents its degree of satisfaction in relation to the consumed transmission power. Based on the distributed nature of the M2M network, a maximization problem of each device's utility function is formulated as a non-cooperative game and its unique Nash equilibrium point is determined, in terms of devices' optimal transmission powers. Considering the devices' equilibrium transmission powers, the optimal charging transmission powers of the cluster-heads are derived. The performance of the proposed approach is evaluated via modeling and simulation and under various topologies and scenarios, and its operational efficiency and effectiveness is demonstrated. (C) 2017 Elsevier B.V. All rights reserved.
机译:机器对机器(M2M)驱动的物联网(IoT)的新兴范式,其中的物理对象并未与虚拟世界断开连接,而是旨在共同提供上下文服务,因此需要增强的,更节能的资源管理方法。在本文中,该问题是通过联合兴趣,物理和能源感知群集以及资源管理框架来解决的,并利用了无线供电通信(WPC)技术。在所提出的框架内,大量的M2M设备最初基于低复杂度的中国饭店过程(CRP)形成了不同的集群,并经过适当调整以解决与兴趣,物理和能源相关的因素。之后,在每个群集的成员中选择一个群集头。所提出的方法使得在簇头的支持下的簇的设备能够通过采用WPC范例的射频(RF)信号以稳定的方式收集和存储能量,从而延长了整个M2M网络的运行。每个M2M设备都与通用效用功能关联,该通用效用功能适当地表示其相对于所消耗的发射功率的满意度。基于M2M网络的分布式性质,将每个设备效用函数的最大化问题表述为非合作博弈,并根据设备的最佳传输功率确定其唯一的纳什均衡点。考虑到设备的平衡传输功率,得出了簇头的最佳充电传输功率。通过建模和仿真并在各种拓扑和场景下评估了该方法的性能,并证明了其操作效率和有效性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号