首页> 外文期刊>ACM transactions on the web >Time-aspect-sentiment Recommendation Models Based on Novel Similarity Measure Methods
【24h】

Time-aspect-sentiment Recommendation Models Based on Novel Similarity Measure Methods

机译:基于新型相似性测量方法的时效性思想推荐模型

获取原文
获取原文并翻译 | 示例

摘要

The explosive growth of e-commerce has led to the development of the recommendation system. The recommendation system aims to provide a set of items that meet users' personalized needs through analyzing users' consumption records. However, the timeliness of purchasing data and the implicity of feedback data pose severe challenges for the existing recommendation methods. To alleviate these challenges, we exploit the user's consumption records from the perspectives of user and item, by modeling the data on both item and user level, where the item-level value reflects the grade of item, and the user-level value reflects the user's purchase intention. In this article, we collect the description information and the reviews of the items from public websites, then adopt sentiment analysis techniques to model the similarities on user level and item level, respectively. In particular, we extend the traditional latent factor model and propose two novel methods-Item Level Similarity Matrix Factorization (ILMF) and User Level Similarity Matrix Factorization (ULMF)-by introducing two novel similarity measure methods. In ILMF and ULMF, the consistency between latent factors and explicit aspects is naturally incorporated into learning latent factors of the users and items, such that we can predict the users' preferences on different items more accurately. Moreover, we propose Item-User Level Similarity Matrix Factorization (IULMF), which combines these two methods to study their contributions on the final performance. Experimental evaluations on the real datasets show that our methods outperform the baseline approaches in terms of both the precision and NDCG.
机译:电子商务的爆炸性增长导致了推荐制度的发展。推荐系统旨在通过分析用户的消费记录提供一系列满足用户个性化需求的项目。但是,购买数据的及时性和反馈数据的隐性对现有推荐方法构成严重挑战。为了缓解这些挑战,我们通过在项目和用户级别上建模数据来利用用户和项目的角度来利用用户的消费记录,其中项目级值反映项目的等级,用户级值反映了用户的购买意图。在本文中,我们收集描述信息和来自公共网站的项目的审查,然后采用情感分析技术分别模拟用户级和项目级别的相似之处。特别是,我们扩展了传统的潜在因子模型,提出了两种新方法 - 项目级相似性矩阵分解(ILMF)和用户级相似性矩阵分解(ULMF) - 引入了两种新的相似度测量方法。在ILMF和ULMF中,潜在因子与明确方面之间的一致性自然地纳入了用户和项目的学习潜在因子,使得我们可以更准确地预测用户对不同项目的偏好。此外,我们提出了项目 - 用户级相似性矩阵分解(iulmf),其结合了这两种方法来研究其最终性能的贡献。实验性评估实验数据集显示我们的方法在精度和NDCG方面优于基线方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号