首页> 外文期刊>ACM transactions on the web >Quality and Leniency in Online Collaborative Rating Systems
【24h】

Quality and Leniency in Online Collaborative Rating Systems

机译:在线协作评估系统的质量和宽容

获取原文
获取原文并翻译 | 示例

摘要

The emerging trend of social information processing has resulted in Web users' increased reliance on user-generated content contributed by others for information searching and decision making. Rating scores, a form of user-generated content contributed by reviewers in online rating systems, allow users to leverage others' opinions in the evaluation of objects. In this article, we focus on the problem of summarizing the rating scores given to an object into an overall score that reflects the object's quality. We observe that the existing approaches for summarizing scores largely ignores the effect of reviewers exercising different standards in assigning scores. Instead of treating all reviewers as equals, our approach models the leniency of reviewers, which refers to the tendency of a reviewer to assign higher scores than other coreviewers. Our approach is underlined by two insights: (1) The leniency of a reviewer depends not only on how the reviewer rates objects, but also on how other reviewers rate those objects and (2) The leniency of a reviewer and the quality of rated objects are mutually dependent. We develop the leniency-aware quality, or LQ model, which solves leniency and quality simultaneously. We introduce both an exact and a ranked solution to the model. Experiments on real-life and synthetic datasets show that LQ is more effective than comparable approaches. LQ is also shown to perform consistently better under different parameter settings.
机译:社会信息处理的新兴趋势导致Web用户越来越依赖其他人提供的用户生成内容来进行信息搜索和决策。评分分数是在线评分系统中审阅者提供的用户生成内容的一种形式,它使用户可以在评估对象时利用他人的意见。在本文中,我们着重于将赋予对象的评分分数汇总为反映该对象质量的总体分数的问题。我们注意到,现有的分数汇总方法在很大程度上忽略了审阅者在分配分数时采用不同标准的影响。我们的方法不是对所有审阅者一视同仁,而是对审阅者的宽大处理进行建模,这是指审阅者倾向于比其他核心审阅者分配更高的分数。我们的方法有两个见解:(1)审阅者的宽容不仅取决于审阅者对对象的评分方式,还取决于其他审阅者对这些对象的评分方式;(2)审阅者的宽容度和被评估对象的质量相互依赖。我们开发了宽大处理质量或LQ模型,它可以同时解决宽大处理和质量问题。我们为模型介绍了精确的解决方案和排名排序的解决方案。在现实生活和综合数据集上的实验表明,LQ比可比方法更有效。 LQ还显示出在不同参数设置下的性能始终如一。

著录项

  • 来源
    《ACM transactions on the web》 |2012年第1期|p.4.1-4.27|共27页
  • 作者单位

    Nanyang Technological University Institute for Infocomm Research, 1 Fusionopolis Way #21-01 Connexis (South Tower), Singapore 138632;

    School of Information Systems, Singapore Management University, 80 Stamford Road, Singapore 178902;

    Department of Computing Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    quality; leniency; rating; link analysis; social network mining;

    机译:质量;宽大;评分;链接分析;社交网络挖掘;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号