首页> 外文期刊>ACM transactions on the web >Analyzing Privacy Policies at Scale: From Crowdsourcing to Automated Annotations
【24h】

Analyzing Privacy Policies at Scale: From Crowdsourcing to Automated Annotations

机译:大规模分析隐私策略:从众包到自动注释

获取原文
获取原文并翻译 | 示例

摘要

Website privacy policies are often long and difficult to understand. While research shows that Internet users care about their privacy, they do not have the time to understand the policies of every website they visit, and most users hardly ever read privacy policies. Some recent efforts have aimed to use a combination of crowdsourcing, machine learning, and natural language processing to interpret privacy policies at scale, thus producing annotations for use in interfaces that inform Internet users of salient policy details. However, little attention has been devoted to studying the accuracy of crowdsourced privacy policy annotations, how crowdworker productivity can be enhanced for such a task, and the levels of granularity that are feasible for automatic analysis of privacy policies. In this article, we present a trajectory of work addressing each of these topics. We include analyses of crowdworker performance, evaluation of a method to make a privacy-policy oriented task easier for crowdworkers, a coarse-grained approach to labeling segments of policy text with descriptive themes, and a fine-grained approach to identifying user choices described in policy text. Together, the results from these efforts show the effectiveness of using automated and semi-automated methods for extracting from privacy policies the data practice details that are salient to Internet users' interests.%1.1-1.29
机译:网站隐私政策通常漫长且难以理解。尽管研究表明互联网用户关心自己的隐私,但他们没有时间了解他们访问的每个网站的政策,而且大多数用户几乎从未阅读过隐私政策。最近的一些努力旨在结合使用众包,机器学习和自然语言处理来大规模地解释隐私策略,从而生成用于接口的注释,以将重要的策略细节告知Internet用户。但是,很少有人致力于研究众包隐私策略注释的准确性,如何提高此任务的众包生产率以及可用于自动分析隐私策略的粒度级别。在本文中,我们提出了解决这些主题的工作轨迹。我们包括对人群工作人员绩效的分析,对使人群工作人员更容易执行面向隐私策略的任务的方法的评估,使用描述性主题标记策略文本段的粗粒度方法以及用于识别用户选择的细粒度方法政策文本。这些努力的结果共同表明,使用自动和半自动方法从隐私策略中提取对互联网用户的利益非常重要的数据实践细节的有效性。%1.1-1.29

著录项

  • 来源
    《ACM transactions on the web》 |2019年第1期|1-29|共29页
  • 作者单位

    Carnegie Mellon Univ, Pittsburgh, PA 15213 USA|Penn State Univ, Coll Informat Sci & Technol, Westgate Bldg, University Pk, PA 16802 USA;

    Carnegie Mellon Univ, Pittsburgh, PA 15213 USA|Univ Michigan, Sch Informat, 105 S State St, Ann Arbor, MI 48109 USA;

    Carnegie Mellon Univ, Pittsburgh, PA 15213 USA|Univ Cent Florida, Comp Sci Dept, 4328 Scorpius St, Orlando, FL 32816 USA;

    Carnegie Mellon Univ, Sch Comp Sci, 5000 Forbes Ave, Pittsburgh, PA 15213 USA;

    Carnegie Mellon Univ, Sch Comp Sci, 5000 Forbes Ave, Pittsburgh, PA 15213 USA;

    Carnegie Mellon Univ, Pittsburgh, PA 15213 USA|Wesleyan Univ, Dept Math & Comp Sci, Sci Tower 655,265 Church St, Middletown, CT 06459 USA;

    Carnegie Mellon Univ, Sch Comp Sci, 5000 Forbes Ave, Pittsburgh, PA 15213 USA;

    Carnegie Mellon Univ, Sch Comp Sci, 5000 Forbes Ave, Pittsburgh, PA 15213 USA;

    Carnegie Mellon Univ, Pittsburgh, PA 15213 USA;

    Carnegie Mellon Univ, Sch Comp Sci, 5000 Forbes Ave, Pittsburgh, PA 15213 USA;

    Univ Washington, Paul G Allen Sch Comp Sci & Engn, Box 352350,185 E Stevens Way NE, Seattle, WA 98195 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Privacy; privacy policies; crowdsourcing; machine learning; natural language processing; human computer interaction (HCI);

    机译:隐私;隐私策略;众包​​;机器学习;自然语言处理;人机交互(HCI);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号