首页> 外文期刊>ACM Transactions on Spatial Algorithms and Systems >SeqST-GAN: Seq2Seq Generative Adversarial Nets for Multi-step Urban Crowd Flow Prediction
【24h】

SeqST-GAN: Seq2Seq Generative Adversarial Nets for Multi-step Urban Crowd Flow Prediction

机译:SEQST-GAN:SEQ2Seq生成对抗多步城市人群流动预测

获取原文
获取原文并翻译 | 示例

摘要

Citywide crowd flow data are ubiquitous nowadays, and forecasting the flow of crowds is of great importance to many real applications such as traffic management and mobility-on-demand (MOD) services. The challenges of accurately predicting urban crowd flows come from both the nonlinear spatial-temporal correlations of the crowd flow data and the complex impact of the external context factors, such as weather, holidays, and POIs. It is even more challenging for most existing one-step prediction models to make an accurate prediction across multiple future time slots. In this article, we propose a sequence-to-sequence (Seq2Seq) Generative Adversarial Nets model named SeqST-GAN to perform multi-step Spatial-Temporal crowd flow prediction of a city. Motivated by the success of GAN in video prediction, we for the first time propose an adversarial learning framework by regarding the citywide crowd flow data in successive time slots as "image frames." Specifically, we first use a Seq2Seq model to generate a sequence of future "frame" predictions based on previous ones. Then, by integrating the generation error with the adversary loss, SeqST-GAN can avoid the blurry prediction issue and make more accurate predictions. To incorporate the external contexts, an external-context gate module called EC-Gate is also proposed to learn region-level representations of the context features. Experiments on two large crowd flow datasets in New York demonstrate that SeqST-GAN improves the prediction performance by a large margin compared with the existing state-of-the-art.
机译:全市人群流量数据如今普遍存在,预测人群的流量非常重视许多真实应用,如交通管理和按需移动(MOD)服务。准确预测城市人群流量的挑战来自人群流量数据的非线性空间时间相关性和外部上下文因素的复杂影响,例如天气,假期和POI。对于大多数现有的一步预测模型来说,更具挑战性更具挑战性,以便跨多个未来的时隙进行准确的预测。在本文中,我们提出了一种名为SEQST-GAN的序列到序列(SEQ2SEQ)生成的对抗网模型,以执行城市的多步空空间人群流量预测。通过GaN的成功在视频预测中,我们首次提出了通过在连续时隙中作为“图像框架”的城市各个人群流量数据提出了对抗的学习框架。具体地,我们首先使用SEQ2Seq模型来基于先前的模型生成一系列未来的“帧”预测。然后,通过将生成错误与对手损失集成,SEQST-GAN可以避免模糊的预测问题并做出更准确的预测。为了结合外部上下文,还提出了一种名为EC门的外部上下文门模块,以学习上下文特征的区域级表示。纽约两大人群流数据集的实验表明,与现有的最先进的相比,SEQST-GAN通过大幅度提高了预测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号