首页> 外文期刊>ACM transactions on software engineering and methodology >Predicting Performance Anomalies in Software Systems at Run-time
【24h】

Predicting Performance Anomalies in Software Systems at Run-time

机译:在运行时预测软件系统中的性能异常

获取原文
获取原文并翻译 | 示例

摘要

High performance is a critical factor to achieve and maintain the success of a software system. Performance anomalies represent the performance degradation issues (e.g., slowing down in system response times) of software systems at run-time. Performance anomalies can cause a dramatically negative impact on users' satisfaction. Prior studies propose different approaches to detect anomalies by analyzing execution logs and resource utilization metrics after the anomalies have happened. However, the prior detection approaches cannot predict the anomalies ahead of time; such limitation causes an inevitable delay in taking corrective actions to prevent performance anomalies from happening. We propose an approach that can predict performance anomalies in software systems and raise anomaly warnings in advance. Our approach uses a Long-Short Term Memory neural network to capture the normal behaviors of a software system. Then, our approach predicts performance anomalies by identifying the early deviations from the captured normal system behaviors. We conduct extensive experiments to evaluate our approach using two real-world software systems (i.e., Elasticsearch and Hadoop). We compare the performance of our approach with two baselines. The first baseline is one state-to-the-art baseline called Unsupervised Behavior Learning. The second baseline predicts performance anomalies by checking if the resource utilization exceeds pre-defined thresholds. Our results show that our approach can predict various performance anomalies with high precision (i.e., 97-100%) and recall (i.e., 80-100%), while the baselines achieve 25-97% precision and 93-100% recall. For a range of performance anomalies, our approach can achieve sufficient lead times that vary from 20 to 1,403 s (i.e., 23.4 min). We also demonstrate the ability of our approach to predict the performance anomalies that are caused by real-world performance bugs. For predicting performance anomalies that are caused by real-world performance bugs, our approach achieves 95-100% precision and 87-100% recall, while the baselines achieve 49-83% precision and 100% recall. The obtained results show that our approach outperforms the existing anomaly prediction approaches and is able to predict performance anomalies in real-world systems.
机译:高性能是实现和维护软件系统成功的关键因素。性能异常代表运行时软件系统的性能下降问题(例如,系统响应时间减慢)。性能异常会对用户的满意度引起显着的负面影响。先前的研究提出了通过分析发生异常发生后的执行日志和资源利用率来检测异常的不同方法。然而,之前的检测方法不能提前预测异常;这种限制导致不可避免的延迟采取纠正措施,以防止性能异常发生。我们提出一种可以预测软件系统中性能异常的方法,提前提高异常警告。我们的方法使用长期内存神经网络来捕获软件系统的正常行为。然后,我们的方法通过识别与捕获的正常系统行为的早期偏差来预测性能异常。我们进行广泛的实验来评估我们使用两个现实世界软件系统的方法(即,Elasticsearch和Hadoop)。我们将我们的方法与两个基线进行比较。第一个基线是一个名为无监督行为学习的最新基线。第二个基线通过检查资源利用率是否超过预定义阈值来预测性能异常。我们的研究结果表明,我们的方法可以预测具有高精度的各种性能异常(即,97-100%)和召回(即80-100%),而基线达到25-97%的精度和93-100%的召回。对于一系列性能异常,我们的方法可以获得足够的交易时间,从20到1,403 s(即23.4分钟)不同。我们还展示了我们预测由现实世界绩效错误引起的性能异常的能力。为了预测由现实世界表现错误引起的性能异常,我们的方法可以获得95-100%的精度和87-100%的召回,而基线达到49-83%的精度和100%召回。所获得的结果表明,我们的方法优于现有的异常预测方法,能够预测现实世界系统中的性能异常。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号