首页> 外文期刊>ACM transactions on software engineering and methodology >Lightweight, Obfuscation-Resilient Detection and Family Identification of Android Malware
【24h】

Lightweight, Obfuscation-Resilient Detection and Family Identification of Android Malware

机译:Android恶意软件的轻量级,抗混淆性检测和家族识别

获取原文
获取原文并翻译 | 示例

摘要

The number of malicious Android apps is increasing rapidly. Android malware can damage or alter other files or settings, install additional applications, and so on. To determine such behaviors, a security analyst can significantly benefit from identifying the family to which an Android malware belongs rather than only detecting if an app is malicious. Techniques for detecting Android malware, and determining their families, lack the ability to handle certain obfuscations that aim to thwart detection. Moreover, some prior techniques face scalability issues, preventing them from detecting malware in a timely manner. To address these challenges, we present a novel machine-learning-based Android malware detection and family identification approach, RevealDroid, that operates without the need to perform complex program analyses or to extract large sets of features. Specifically, our selected features leverage categorized Android API usage, reflection-based features, and features from native binaries of apps. We assess RevealDroid for accuracy, efficiency, and obfuscation resilience using a large dataset consisting of more than 54,000 malicious and benign apps. Our experiments show that RevealDroid achieves an accuracy of 98% in detection of malware and an accuracy of 95% in determination of their families. We further demonstrate RevealDroid's superiority against state-of-the-art approaches.
机译:恶意Android应用程序的数量正在迅速增加。 Android恶意软件可能损坏或更改其他文件或设置,安装其他应用程序,等等。为了确定此类行为,安全分析师可以从识别Android恶意软件所属的家族中受益,而不仅仅是检测应用程序是否为恶意软件。用于检测Android恶意软件并确定其家族的技术缺乏处理旨在阻碍检测的某些混淆功能。而且,一些现有技术面临可伸缩性问题,从而阻止它们及时检测恶意软件。为了解决这些挑战,我们提出了一种新颖的基于机器学习的Android恶意软件检测和家族识别方法RevealDroid,该方法无需进行复杂的程序分析或提取大量功能即可运行。具体来说,我们选择的功能利用分类的Android API使用情况,基于反射的功能以及来自应用程序本机二进制文件的功能。我们使用包含超过54,000个恶意和良性应用程序的大型数据集来评估RevealDroid的准确性,效率和混淆弹性。我们的实验表明,RevealDroid在检测恶意软件方面达到98%的准确性,在确定其家族方面达到95%的准确性。我们进一步展示了RevealDroid相对于最新方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号