首页> 外文期刊>ACM transactions on sensor networks >A Query Processing Framework for Efficient Network Resource Utilization in Shared Sensor Networks
【24h】

A Query Processing Framework for Efficient Network Resource Utilization in Shared Sensor Networks

机译:共享传感器网络中有效网络资源利用的查询处理框架

获取原文
获取原文并翻译 | 示例

摘要

Shared Sensor Network (SSN) refers to a scenario where the same sensing and communication resources are shared and queried by multiple Internet applications. Due to the burgeoning growth in Internet applications, multiple application queries can exhibit overlapping in their functional requirements, such as the region of interest, sensing attributes, and sensing time duration. This overlapping results in redundant sensing tasks generation leading to the increased overall network traffic and energy consumption. Existing approaches operate on data sharing among various tasks to minimize the upstream traffic. However, no existing work attempts to prevent the redundant task generation to reduce the downstream traffic. Moreover, the allocation of suitable sensor nodes to meet the Quality of Service (QoS) requirements of the queries is still an open issue. This article proposes an end-to-end query processing framework (named, QueryPM) that first, calculates the functional requirements similarity among queries to prevent the redundant task generation. Then, it takes the QoS and functional requirements into account while allocating the tasks on the sensor nodes. Extensive simulations on the proposed approach show that downstream traffic, upstream traffic, and energy consumption reduced to 60%, 20-40%, and 40%, respectively, as compared to state-of-the-art mechanisms.
机译:共享传感器网络(SSN)是指由多个Internet应用程序共享和查询相同的传感和通信资源的场景。由于互联网应用中的蓬勃发展,多个应用查询可以在其功能要求中表现出重叠,例如感兴趣的区域,感应属性和感测持续时间。这种重叠导致冗余的传感任务生成,导致整体网络流量和能量消耗增加。现有方法在各个任务之间进行数据共享,以最大限度地减少上游流量。但是,没有现有的工作尝试防止冗余任务生成降低下游流量。此外,合适的传感器节点分配以满足查询的服务质量(QoS)要求仍然是一个开放问题。本文提出了端到端查询处理框架(命名,QueryPM)首先,计算查询中的功能要求相似性以防止冗余任务生成。然后,在分配传感器节点上的任务的同时考虑QoS和功能要求。与所提出的方法的广泛模拟表明,与最先进的机制相比,下游交通,上游交通,上游业务和能耗分别降至60%,20-40%和40%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号