首页> 外文期刊>ACM transactions on sensor networks >In-Situ Soil Moisture Sensing: Optimal Sensor Placement and Field Estimation
【24h】

In-Situ Soil Moisture Sensing: Optimal Sensor Placement and Field Estimation

机译:原位土壤湿度感测:最佳传感器放置和现场估算

获取原文
获取原文并翻译 | 示例

摘要

We study the problem of optimal sensor placement in the context of soil moisture sensing. We show that the soil moisture data possesses some unique features that can be used together with the commonly used Gaussian assumption to construct more scalable, robust, and better performing placement algorithms. Specifically, there exists a coarse-grained monotonic ordering of locations in their soil moisture level over time, both in terms of its first and second moments, a feature much more stable than the soil moisture process itself at these locations. This motivates a clustered sensor placement scheme, where locations are classified into clusters based on the ordering of the mean, with the number of sensors placed in each cluster determined by the ordering of the variances. We show that under idealized conditions the greedy mutual information maximization algorithm applied globally is equivalent to that applied cluster by cluster, but the latter has the advantage of being more scalable. Extensive numerical experiments are performed on a set of three-dimensional soil moisture data generated by a state-of-the-art soil moisture simulator. Our results show that our clustering approach outperforms applying the same algorithms globally, and is very robust to lack of training and errors in training data.
机译:我们研究了在土壤湿度感测中最佳传感器放置的问题。我们表明,土壤水分数据具有一些独特的功能,可以与常用的高斯假设一起使用,以构造更可扩展,更健壮和性能更好的放置算法。具体而言,就土壤的水分含量而言,就其一阶和二阶矩而言,随时间的推移存在一个粗粒度的单调排序,这比这些位置的土壤水分过程本身要稳定得多。这激发了群集的传感器放置方案,其中根据均值的顺序将位置分类为群集,而放置在每个群集中的传感器数量则由方差的顺序确定。我们表明,在理想条件下,全局应用的贪婪互信息最大化算法等效于逐个群集应用,但是后者具有可伸缩性更高的优势。对一组由最新的土壤水分模拟器产生的三维土壤水分数据进行了广泛的数值实验。我们的结果表明,我们的聚类方法在全球范围内优于应用相同的算法,并且对于缺乏训练和训练数据中的错误非常有力。

著录项

  • 来源
    《ACM transactions on sensor networks》 |2012年第4期|165-194|共30页
  • 作者

    XIAOPEI WU; MINGYAN LIU; YUE WU;

  • 作者单位

    School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China and Electrical Engineering and Computer Science De partment, University of Michigan, Ann Arbor, MI 48109-2122;

    Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, MI 48109-2122;

    School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054. China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    soil moisture; 2D/3D sensor placement; gaussian process; gaussian; regression; coarse-grained orderings;

    机译:土壤湿度;2D / 3D传感器放置;高斯过程高斯回归粗粒度排序;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号