首页> 外文期刊>ACM Transactions on Parallel Computing >Pagoda: A GPU Runtime System for Narrow Tasks
【24h】

Pagoda: A GPU Runtime System for Narrow Tasks

机译:宝塔:适用于狭窄任务的GPU运行时系统

获取原文
获取原文并翻译 | 示例

摘要

Massively multithreaded GPUs achieve high throughput by running thousands of threads in parallel. To fully utilize the their hardware, contemporary workloads spawn work to the GPU in bulk by launching large tasks, where each task is a kernel that contains thousands of threads that occupy the entire GPU. GPUs face severe underutilization and their performance benefits vanish if the tasks are narrow, i.e., they contain less than 512 threads. Latency-sensitive applications in network, signal, and image processing that generate a large number of tasks with relatively small inputs are examples of such limited parallelism. This article presents Pagoda, a runtime system that virtualizes GPU resources, using an OS-like daemon kernel called MasterKernel. Tasks are spawned from the CPU onto Pagoda as they become available, and are scheduled by the MasterKernel at the warp granularity. This level of control enables the GPU to keep scheduling and executing tasks as long as free warps are found, dramatically reducing underutilization. Experimental results on real hardware demonstrate that Pagoda achieves a geometric mean speedup of 5.52X over PThreads running on a 20-core CPU, 1.76X over CUDA-HyperQ, and 1.44X over GeMTC, the state-of-the-art runtime GPU task scheduling system.
机译:大规模多线程GPU通过并行运行数千个线程来实现高吞吐量。为了充分利用其硬件,当代的工作负载通过启动大型任务将工作批量生成给GPU,其中每个任务都是一个内核,其中包含占据整个GPU的数千个线程。 GPU面临严重的利用率不足问题,如果任务狭窄(即少于512个线程),其性能优势将消失。在网络,信号和图像处理中对延迟敏感的应用程序会以相对较小的输入生成大量任务,这是此类有限并行性的示例。本文介绍了Pagoda,这是一个运行时系统,它使用称为MasterKernel的类似于OS的守护程序内核来虚拟化GPU资源。当任务可用时,它们会从CPU生成到宝塔上,并由主内核按扭曲粒度进行调度。这种控制级别使GPU只要发现免费扭曲就可以继续调度和执行任务,从而大大减少了利用率不足的情况。实际硬件上的实验结果表明,Pagoda在20核CPU上运行的PThreads的几何平均速度提高了5.52倍,在CUDA-HyperQ上提高了1.76倍,在GeMTC上达到了1.44倍(最新的运行时GPU任务)调度系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号