首页> 外文期刊>ACM transactions on multimedia computing communications and applications >Content-Based Copy Detection through Multimodal Feature Representation and Temporal Pyramid Matching
【24h】

Content-Based Copy Detection through Multimodal Feature Representation and Temporal Pyramid Matching

机译:通过多模式特征表示和时间金字塔匹配进行基于内容的副本检测

获取原文
获取原文并翻译 | 示例

摘要

Content-based copy detection (CBCD) is drawing increasing attention as an alternative technology to watermarking for video identification and copyright protection. In this article, we present a comprehensive method to detect copies that are subjected to complicated transformations. A multimodal feature representation scheme is designed to exploit the complementarity of audio features, global and local visual features so that optimal overall robustness to a wide range of complicated modifications can be achieved. Meanwhile, a temporal pyramid matching algorithm is proposed to assemble frame-level similarity search results into sequence-level matching results through similarity evaluation over multiple temporal granularities. Additionally, inverted indexing and locality sensitive hashing (LSH) are also adopted to speed up similarity search. Experimental results over benchmarking datasets of TRECVID 2010 and 2009 demonstrate that the proposed method outperforms other methods for most transformations in terms of copy detection accuracy. The evaluation results also suggest that our method can achieve competitive copy localization preciseness.
机译:基于内容的复制检测(CBCD)作为视频识别和版权保护的水印替代技术正在引起越来越多的关注。在本文中,我们提出了一种全面的方法来检测经受复杂转换的副本。设计了一种多模式特征表示方案,以利用音频特征,全局和局部视觉特征的互补性,从而可以实现对各种复杂修改的最佳总体鲁棒性。同时,提出了一种时间金字塔匹配算法,通过对多个时间粒度的相似度评估,将帧级相似度搜索结果组装成序列级匹配结果。此外,还采用了反向索引和局部敏感哈希(LSH)来加快相似度搜索。在TRECVID 2010和2009的基准数据集上的实验结果表明,对于大多数转换而言,该方法在复制检测准确性方面优于其他方法。评估结果还表明,我们的方法可以达到竞争性的副本定位精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号