首页> 外文期刊>ACM transactions on multimedia computing communications and applications >QoE-Driven Rate Adaptation Heuristic for Fair Adaptive Video Streaming
【24h】

QoE-Driven Rate Adaptation Heuristic for Fair Adaptive Video Streaming

机译:QoE驱动的速率自适应启发式算法,用于公平的自适应视频流

获取原文
获取原文并翻译 | 示例

摘要

HTTP Adaptive Streaming (HAS) is quickly becoming the de facto standard for video streaming services. In HAS, each video is temporally segmented and stored in different quality levels. Rate adaptation heuristics, deployed at the video player, allow the most appropriate level to be dynamically requested, based on the current network conditions. It has been shown that today's heuristics underperform when multiple clients consume video at the same time, due to fairness issues among clients. Concretely, this means that different clients negatively influence each other as they compete for shared network resources. In this article, we propose a novel rate adaptation algorithm called FINEAS (Fair In-Network Enhanced Adaptive Streaming), capable of increasing clients' Quality of Experience (QoE) and achieving fairness in a multiclient setting. A key element of this approach is an in-network system of coordination proxies in charge of facilitating fair resource sharing among clients. The strength of this approach is threefold. First, fairness is achieved without explicit communication among clients and thus no significant overhead is introduced into the network. Second, the system of coordination proxies is transparent to the clients, that is, the clients do not need to be aware of its presence. Third, the HAS principle is maintained, as the in-network components only provide the clients with new information and suggestions, while the rate adaptation decision remains the sole responsibility of the clients themselves. We evaluate this novel approach through simulations, under highly variable bandwidth conditions and in several multiclient scenarios. We show how the proposed approach can improve fairness up to 80% compared to state-of-the-art HAS heuristics in a scenario with three networks, each containing 30 clients streaming video at the same time.
机译:HTTP自适应流(HAS)迅速成为视频流服务的事实上的标准。在HAS中,每个视频都在时间上进行了分段,并以不同的质量级别存储。部署在视频播放器上的速率自适应试探法可以根据当前网络条件动态地请求最合适的级别。已经显示,由于客户端之间的公平性问题,当多个客户端同时消费视频时,当今的启发式方法的性能不佳。具体来说,这意味着不同的客户端在竞争共享的网络资源时会相互产生负面影响。在本文中,我们提出了一种新颖的速率自适应算法,称为FINEAS(公平的网络内增强自适应流),能够提高客户的体验质量(QoE)并在多客户端环境中实现公平。这种方法的关键要素是一个协调代理的网络内系统,负责促进客户之间的公平资源共享。这种方法的优势是三方面的。首先,在没有客户端之间显式通信的情况下实现了公平性,因此没有将大量开销引入网络。其次,协调代理系统对客户是透明的,也就是说,客户不需要知道其存在。第三,维持HAS原则,因为网络内组件仅向客户提供新的信息和建议,而费率调整决策仍由客户自己承担。我们在高度可变的带宽条件下和几种多客户端方案中通过仿真评估了这种新颖的方法。我们展示了在具有三个网络(每个网络同时包含30个客户端同时传输视频)的情况下,与最新的HAS启发式方法相比,所提出的方法如何将公平性提高了80%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号