首页> 外文期刊>ACM transactions on multimedia computing communications and applications >Query Expansion for Content-Based Similarity Search Using Local and Global Features
【24h】

Query Expansion for Content-Based Similarity Search Using Local and Global Features

机译:使用本地和全局功能对基于内容的相似性搜索进行查询扩展

获取原文
获取原文并翻译 | 示例

摘要

This article presents an efficient and totally unsupervised content-based similarity search method for multimedia data objects represented by high-dimensional feature vectors. The assumption is that the similarity measure is applicable to feature vectors of arbitrary length. During the offline process, different sets of features are selected by a generalized version of the Laplacian Score in an unsupervised way for individual data objects in the database. Online retrieval is performed by ranking the query object in the feature spaces of candidate objects. Those candidates for which the query object is ranked highly are selected as the query results. The ranking scheme is incorporated into an automated query expansion framework to further improve the semantic quality of the search result. Extensive experiments were conducted on several datasets to show the capability of the proposed method in boosting effectiveness without losing efficiency.
机译:本文针对由高维特征向量表示的多媒体数据对象,提出了一种有效且完全不受监督的基于内容的相似度搜索方法。假设相似性度量适用于任意长度的特征向量。在脱机过程中,拉普拉斯分数的通用版本以无监督的方式为数据库中的各个数据对象选择了不同的功能集。通过在候选对象的特征空间中对查询对象进行排名来执行在线检索。选择查询对象被高度评价的那些候选作为查询结果。排名方案被合并到自动查询扩展框架中,以进一步提高搜索结果的语义质量。在几个数据集上进行了广泛的实验,以表明该方法在不降低效率的情况下提高有效性的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号