首页> 外文期刊>ACM transactions on multimedia computing communications and applications >An Analytic System for User Gender Identification through User Shared Images
【24h】

An Analytic System for User Gender Identification through User Shared Images

机译:通过用户共享图像识别用户性别的分析系统

获取原文
获取原文并翻译 | 示例

摘要

Many social media applications, such as recommendation, virality prediction, and marketing, make use of user gender, which may not be explicitly specified or kept privately. Meanwhile, advanced mobile devices have become part of our lives and a huge amount of content is being generated by users every day, especially user shared images shared by individuals in social networks. This particular form of user generated content is widely accessible to others due to the sharing nature. When user gender is only accessible to exclusive parties, these user shared images are proved to be an easier way to identify user gender. This work investigated 3,152,344 images by 7,450 users from Fotolog and Flickr, two image-oriented social networks. It is observed that users who share visually similar images are more likely to have the same gender. A multimedia big data system that utilizes this phenomenon is proposed for user gender identification with 79% accuracy. These findings are useful for information or services in any social network with intensive image sharing.
机译:许多社交媒体应用程序(例如推荐,病毒式预测和营销)都利用用户性别,而用户性别可能没有明确指定或私下保存。同时,先进的移动设备已成为我们生活的一部分,用户每天都在生成大量内容,尤其是社交网络中个人共享的用户共享图像。由于共享的性质,这种特定形式的用户生成内容可以被其他人广泛访问。当用户性别仅可由独占方访问时,这些用户共享图像被证明是识别用户性别的一种更简单的方法。这项工作调查了来自两个面向图像的社交网络Fotolog和Flickr的7,450位用户的3,152,344张图像。据观察,共享视觉相似图像的用户更有可能具有相同的性别。提出了一种利用这种现象的多媒体大数据系统,用于以79%的准确度识别用户性别。这些发现对于具有密集图像共享的任何社交网络中的信息或服务都是有用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号