首页> 外文期刊>ACM transactions on multimedia computing communications and applications >A Temporal Order Modeling Approach to Human Action Recognition from Multimodal Sensor Data
【24h】

A Temporal Order Modeling Approach to Human Action Recognition from Multimodal Sensor Data

机译:一种基于多模态传感器数据的人类动作识别的时间顺序建模方法

获取原文
获取原文并翻译 | 示例

摘要

From wearable devices to depth cameras, researchers have exploited various multimodal data to recognize human actions for applications, such as video gaming, education, and healthcare. Although there many successful techniques have been presented in the literature, most current approaches have focused on statistical or local spatiotemporal features and do not explicitly explore the temporal dynamics of the sensor data. However, human action data contain rich temporal structure information that can characterize the unique underlying patterns of different action categories. From this perspective, we propose a novel temporal order modeling approach to human action recognition. Specifically, we explore subspace projections to extract the latent temporal patterns from different human action sequences. The temporal order between these patterns are compared, and the index of the pattern that appears first is used to encode the entire sequence. This process is repeated multiple times and produces a compact feature vector representing the temporal dynamics of the sequence. Human action recognition can then be efficiently solved by the nearest neighbor search based on the Hamming distance between these compact feature vectors. We further introduce a sequential optimization algorithm to learn the optimized projections that preserve the pairwise label similarity of the action sequences. Experimental results on two public human action datasets demonstrate the superior performance of the proposed technique in both accuracy and efficiency.
机译:从可穿戴设备到深度相机,研究人员已经利用各种多模式数据来识别诸如视频游戏,教育和医疗保健等应用的人类动作。尽管在文献中已经提出了许多成功的技术,但是大多数当前的方法集中在统计或局部时空特征上,并且没有明确地探索传感器数据的时间动态。但是,人类动作数据包含丰富的时间结构信息,可以描述不同动作类别的独特基础模式。从这个角度出发,我们提出了一种新颖的时间顺序建模方法来进行人类动作识别。具体来说,我们探索子空间投影以从不同的人类动作序列中提取潜在的时间模式。比较这些模式之间的时间顺序,并使用首先出现的模式索引来编码整个序列。此过程重复多次,并产生一个紧凑的特征向量,表示序列的时间动态。然后,可以基于这些紧凑特征向量之间的汉明距离,通过最近邻搜索有效地解决人类动作识别问题。我们进一步介绍了一种顺序优化算法,以学习优化的投影,该投影保留了动作序列的成对标记相似性。在两个公众人类行为数据集上的实验结果证明了该技术在准确性和效率上均具有出色的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号