首页> 外文期刊>ACM transactions on multimedia computing communications and applications >DeepSearch:A Fast Image Search Framework for Mobile Devices
【24h】

DeepSearch:A Fast Image Search Framework for Mobile Devices

机译:DeepSearch:一种用于移动设备的快速图像搜索框​​架

获取原文
获取原文并翻译 | 示例

摘要

Content-based image retrieval (CBIR) is one of the most important applications of computer vision. In recent years, there have been many important advances in the development of CBIR systems, especially Convolutional Neural Networks (CNNs) and other deep-learning techniques. On the other hand, current CNN-based CBIR systems suffer from high computational complexity of CNNs. This problem becomes more severe as mobile applications become more and more popular. The current practice is to deploy the entire CBIR systems on the server side while the client side only serves as an image provider. This architecture can increase the computational burden on the server side, which needs to process thousands of requests per second. Moreover, sending images have the potential of personal information leakage. As the need of mobile search expands, concerns about privacy are growing. In this article, we propose a fast image search framework, named DeepSearch, which makes complex image search based on CNNs feasible on mobile phones. To implement the huge computation of CNN models, we present a tensor Block Term Decomposition (BTD) approach as well as a nonlinear response reconstruction method to accelerate the CNNs involving in object detection and feature extraction. The extensive experiments on the ImageNet dataset and Alibaba Large-scale Image Search Challenge dataset show that the proposed accelerating approach BTD can significantly speed up the CNN models and further makes CNN-based image search practical on common smart phones.
机译:基于内容的图像检索(CBIR)是计算机视觉的最重要应用之一。近年来,CBIR系统的开发取得了许多重要进展,尤其是卷积神经网络(CNN)和其他深度学习技术。另一方面,当前基于CNN的CBIR系统遭受CNN的高计算复杂度的困扰。随着移动应用程序越来越流行,这个问题变得更加严重。当前的做法是将整个CBIR系统部署在服务器端,而客户端仅充当图像提供者。这种体系结构会增加服务器端的计算负担,这需要每秒处理数千个请求。此外,发送图像可能会泄露个人信息。随着移动搜索需求的增长,对隐私的关注也在增长。在本文中,我们提出了一种名为DeepSearch的快速图像搜索框​​架,该框架使基于CNN的复杂图像搜索在手机上变得可行。为了实现CNN模型的巨大计算,我们提出了张量块项分解(BTD)方法以及非线性响应重建方法,以加速涉及目标检测和特征提取的CNN。在ImageNet数据集和阿里巴巴大规模图像搜索挑战数据集上的大量实验表明,所提出的加速方法BTD可以显着加快CNN模型的速度,并使基于CNN的图像搜索在普通智能手机上更加实用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号