首页> 外文期刊>ACM transactions on multimedia computing communications and applications >Learning Label Preserving Binary Codes for Multimedia Retrieval: A General Approach
【24h】

Learning Label Preserving Binary Codes for Multimedia Retrieval: A General Approach

机译:学习用于多媒体检索的保留标签二进制代码的通用方法

获取原文
获取原文并翻译 | 示例

摘要

Learning-based hashing has been researched extensively in the past few years due to its great potential in fast and accurate similarity search among huge volumes of multimedia data. In this article, we present a novel multimedia hashing framework, called Label Preserving Multimedia Hashing (LPMH) for multimedia similarity search. In LPMH, a general optimization method is used to learn the joint binary codes of multiple media types by explicitly preserving semantic label information. Compared with existing hashing methods which are typically developed under and thus restricted to some specific objective functions, the proposed optimization strategy is not tied to any specific loss function and can easily incorporate bit balance constraints to produce well-balanced binary codes. Specifically, our formulation leads to a set of Binary Integer Programming (BIP) problems that have exact solutions both with and without bit balance constraints. These problems can be solved extremely fast and the solution can easily scale up to large-scale datasets. In the hash function learning stage, the boosted decision trees algorithm is utilized to learn multiple media-specific hash functions that can map heterogeneous data sources into a homogeneous Hamming space for cross-media retrieval. We have comprehensively evaluated the proposed method using a range of large-scale datasets in both single-media and cross-media retrieval tasks. The experimental results demonstrate that LPMH is competitive with state-of-the-art methods in both speed and accuracy.
机译:由于基于学习的哈希技术在大量多媒体数据之间进行快速,准确的相似性搜索的巨大潜力,因此在过去几年中进行了广泛的研究。在本文中,我们提出了一种新颖的多媒体哈希框架,称为用于多媒体相似性搜索的标签保留多媒体哈希(LPMH)。在LPMH中,一种通用的优化方法是通过显式保留语义标签信息来学习多种媒体类型的联合二进制代码。与通常在某些特定目标函数下开发并因此受限于其的现有散列方法相比,所提出的优化策略不受任何特定损失函数的束缚,并且可以轻松地合并位平衡约束以产生均衡的二进制代码。具体而言,我们的公式化导致了一组二进制整数编程(BIP)问题,这些问题在有位平衡约束和没有位平衡约束的情况下都具有精确的解决方案。这些问题可以非常快速地解决,并且该解决方案可以轻松扩展到大规模数据集。在哈希函数学习阶段,增强决策树算法用于学习多个特定于媒体的哈希函数,这些哈希函数可以将异构数据源映射到同质的汉明空间中,以进行跨媒体检索。我们已经在单媒体和跨媒体检索任务中使用了一系列大规模数据集,对所提出的方法进行了全面评估。实验结果表明,LPMH在速度和准确性上均与最新方法相抗衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号