首页> 外文期刊>ACM transactions on multimedia computing communications and applications >ORL-SDN: Online Reinforcement Learning for SDN-Enabled HTTP Adaptive Streaming
【24h】

ORL-SDN: Online Reinforcement Learning for SDN-Enabled HTTP Adaptive Streaming

机译:ORL-SDN:在线增强学习,用于启用SDN的HTTP自适应流

获取原文
获取原文并翻译 | 示例

摘要

In designing an HTTP adaptive streaming (HAS) system, the bitrate adaptation scheme in the player is a key component to ensure a good quality of experience (QoE) for viewers. We propose a new online reinforcement learning optimization framework, called ORL-SDN, targeting HAS players running in a software-defined networking (SDN) environment. We leverage SDN to facilitate the orchestration of the adaptation schemes for a set of HAS players. To reach a good level of QoE fairness in a large population of players, we cluster them based on a perceptual quality index. We formulate the adaptation process as a Partially Observable Markov Decision Process and solve the per-cluster optimization problem using an online Q-learning technique that leverages model predictive control and parallelism via aggregation to avoid a per-cluster suboptimal selection and to accelerate the convergence to an optimum. This framework achieves maximum long-term revenue by selecting the optimal representation for each cluster under time-varying network conditions. The results show that ORL-SDN delivers substantial improvements in viewer QoE, presentation quality stability, fairness, and bandwidth utilization over well-known adaptation schemes.
机译:在设计HTTP自适应流(HAS)系统时,播放器中的比特率自适应方案是确保观看者获得良好体验质量(QoE)的关键组成部分。我们提出了一个新的在线强化学习优化框架,称为ORL-SDN,该框架针对在软件定义网络(SDN)环境中运行的HAS播放器。我们利用SDN来促进一组HAS参与者的适应方案的编排。为了在大量参与者中达到良好的QoE公平水平,我们根据感知质量指数对它们进行聚类。我们将适应过程公式化为部分可观察的马尔可夫决策过程,并使用在线Q学习技术解决了每个集群的优化问题,该技术通过聚集利用模型预测控制和并行性来避免每个集群的次优选择,并加快收敛速度​​。最佳。通过在时变网络条件下为每个群集选择最佳表示,此框架可实现最大的长期收益。结果表明,与众所周知的自适应方案相比,ORL-SDN在查看器QoE,演示质量稳定性,公平性和带宽利用率方面都取得了显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号