首页> 外文期刊>ACM Transactions on Modeling and Performance Evaluation of Computing Systems >RAPL in Action: Experiences in Using RAPL for Power Measurements
【24h】

RAPL in Action: Experiences in Using RAPL for Power Measurements

机译:RAPL的实际应用:使用RAPL进行功率测量的经验

获取原文
获取原文并翻译 | 示例

摘要

To improve energy efficiency and comply with the power budgets, it is important to be able to measure the power consumption of cloud computing servers. Intel's Running Average Power Limit (RAPL) interface is a powerful tool for this purpose. RAPL provides power limiting features and accurate energy readings for CPUs and DRAM, which are easily accessible through different interfaces on large distributed computing systems. Since its introduction, RAPL has been used extensively in power measurement and modeling. However, the advantages and disadvantages of RAPL have not been well investigated yet. To fill this gap, we conduct a series of experiments to disclose the underlying strengths and weaknesses of the RAPL interface by using both customized microbenchmarks and three well-known application level benchmarks: Stream, Stress-ng, and ParFullCMS. Moreover, to make the analysis as realistic as possible, we leverage two production-level power measurement datasets from the Taito, a supercomputing cluster of the Finnish Center of Scientific Computing and also replicate our experiments on Amazon EC2. Our results illustrate different aspects of RAPL and document the findings through comprehensive analysis. Our observations reveal that RAPL readings are highly correlated with plug power, promisingly accurate enough, and have negligible performance overhead. Experimental results suggest RAPL can be a very useful tool to measure and monitor the energy consumption of servers without deploying any complex power meters. We also show that there are still some open issues, such as driver support, non-atomicity of register updates, and unpredictable timings that might weaken the usability of RAPL in certain scenarios. For such scenarios, we pinpoint solutions and workarounds.
机译:为了提高能源效率并遵守功耗预算,重要的是能够测量云计算服务器的功耗。英特尔的运行平均功率限制(RAPL)接口是用于此目的的强大工具。 RAPL为CPU和DRAM提供了功率限制功能和准确的能量读数,可以通过大型分布式计算系统上的不同接口轻松访问它们。自推出以来,RAPL已被广泛用于功率测量和建模。但是,RAPL的优缺点尚未得到很好的研究。为了填补这一空白,我们通过使用定制的微基准和三个著名的应用程序级别基准(Stream,Stress-ng和ParFullCMS)进行了一系列实验,以揭示RAPL界面的潜在优势和劣势。此外,为了使分析尽可能现实,我们利用了来自Taito(芬兰科学计算中心的超级计算集群)的两个生产级功率测量数据集,并在Amazon EC2上复制了我们的实验。我们的结果说明了RAPL的不同方面,并通过全面分析记录了调查结果。我们的观察结果表明,RAPL读数与插头功率高度相关,有望足够准确,并且性能开销可忽略不计。实验结果表明,RAPL是测量和监视服务器能耗的非常有用的工具,而无需部署任何复杂的电表。我们还表明,仍然存在一些未解决的问题,例如驱动程序支持,寄存器更新的非原子性以及不可预测的时间,这些时间可能会削弱RAPL在某些情况下的可用性。对于此类情况,我们将找出解决方案和解决方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号