首页> 外文期刊>ACM Transactions on Modeling and Computer Simulation >Exposing Inter-process Information for Efficient PDES of Spatial Stochastic Systems on Multicores
【24h】

Exposing Inter-process Information for Efficient PDES of Spatial Stochastic Systems on Multicores

机译:暴露多电线上空间随机系统的高效PDE的进程信息

获取原文
获取原文并翻译 | 示例

摘要

We present a new approach for efficient process synchronization in parallel discrete event simulation on multicore computers. We aim specifically at simulation of spatially extended stochastic system models where time intervals between successive inter-process events are highly variable and without lower bounds: This includes models governed by the mesoscopic Reaction-Diffusion Master Equation (RDME). A central part of our approach is a mechanism for optimism control, in which each process disseminates accurate information about timestamps of its future outgoing interprocess events to its neighbours. This information gives each process a precise basis for deciding when to pause local processing to reduce the risk of expensive rollbacks caused by future "delayed" incoming events. We apply our approach to a natural parallelization of the Next Subvolume Method (NSM) for simulating systems obeying RDME. Since this natural parallelization does not expose accurate timestamps of future interprocess events, we restructure it to expose such information, resulting in a simulation algorithm called Refined Parallel NSM (Refined PNSM). We have implemented Refined PNSM in a parallel simulator for spatial extended Markovian processes. On 32 cores, it achieves an efficiency ranging between 43-95% for large models, and on average 37% for small models, compared to an efficient sequential simulation without any code for parallelization. It is shown that the gain of restructuring the naive parallelization into Refined PNSM more than outweighs its overhead. We also show that our resulting simulator is superior in performance to existing simulators on multicores for comparable models.
机译:我们在多核计算机上展示了一种新方法,用于在多核计算机上并行离散事件仿真中的高效过程同步。我们的目的在于模拟空间扩展的随机系统模型,其中连续的过程中的时间间隔是高度变量的,没有下限:这包括由介于审计反应扩散母部(RDME)控制的模型。我们方法的中央部分是乐观控制的机制,其中每个过程使其将来将来的监控时间戳的准确信息传播到其邻居。此信息为每个过程提供精确的基础,以便决定暂停本地处理以降低未来“延迟”传入事件引起的昂贵回滚的风险。我们将我们的方法应用于下一个Subvolume方法(NSM)的自然并行化,用于遵循RDME的模拟系统。由于这种自然并行化不会暴露未来的切换事件的准确时间戳,因此我们将其重组以暴露此类信息,从而导致称为细化并行NSM(精制PNSM)的仿真算法。我们在并行模拟器中实现了精制的PNSM,用于空间扩展的马尔沃维亚流程。在32个内核上,与有效的连续模拟相比,它可以实现大型型号的效率43-95%,并且平均为小型型号,而小型模型。没有任何用于并行化的代码。结果表明,将天真并行化的增益重构为精制的PNSM,而不是超过其开销。我们还表明,我们的由此产生的模拟器在可比模型的多电视台上的现有模拟器上卓越。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号