首页> 外文期刊>ACM Transactions on Modeling and Computer Simulation >Gradient Extrapolated Stochastic Kriging
【24h】

Gradient Extrapolated Stochastic Kriging

机译:梯度外推随机克里金法

获取原文
获取原文并翻译 | 示例

摘要

We introduce an approach for enhancing stochastic kriging in the setting where additional direct gradient information is available (e.g., provided by techniques such as perturbation analysis or the likelihood ratio method). The new approach, called gradient extrapolated stochastic kriging (GESK), incorporates direct gradient estimates by extrapolating additional responses. For two simplified settings, we show that GESK reduces mean squared error (MSE) compared to stochastic kriging under certain conditions on step sizes. Since extrapolation step sizes are crucial to the performance of the GESK model, we propose two different approaches to determine the step sizes: maximizing penalized likelihood and minimizing integrated mean squared error. Numerical experiments are conducted to illustrate the performance of the GESK model and to compare it with alternative approaches.
机译:我们介绍了一种在可用其他直接梯度信息的情况下(例如,由诸如扰动分析或似然比方法之类的技术提供)的环境中增强随机克里金法的方法。这种称为梯度外推随机克里金法(GESK)的新方法通过外推其他响应来合并直接梯度估计。对于两个简化的设置,我们证明与在某些条件下对步长的随机克里金法相比,GESK降低了均方误差(MSE)。由于外推步长大小对于GESK模型的性能至关重要,因此我们提出了两种不同的方法来确定步长大小:最大化罚分似然性和最小化均方误差。进行了数值实验,以说明GESK模型的性能,并将其与替代方法进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号