首页> 外文期刊>ACM transactions on mathematical software >Error Analysis and Improving the Accuracy of Winograd Convolution for Deep Neural Networks
【24h】

Error Analysis and Improving the Accuracy of Winograd Convolution for Deep Neural Networks

机译:误差分析与深神经网络Winograd卷积准确度的误差分析

获取原文
获取原文并翻译 | 示例

摘要

Popular deep neural networks (DNNs) spend the majority of their execution time computing convolutions. The Winograd family of algorithms can greatly reduce the number of arithmetic operations required and is used in many DNN software frameworks. However, the performance gain is at the expense of a reduction in floating point (FP) numerical accuracy. In this article, we analyse the worst-case FP error and derive an estimation of the norm and conditioning of the algorithm. We show that the bound grows exponentially with the size of the convolution. Further, the error bound of the modified algorithm is slightly lower but still exponential. We propose several methods for reducing FP error. We propose a canonical evaluation ordering based on Huffman coding that reduces summation error. We study the selection of sampling "points" experimentally and find empirically good points for the most important sizes. We identify the main factors associated with good points. In addition, we explore other methods to reduce FP error, including mixed-precision convolution, and pairwise summation across DNN channels. Using our methods, we can significantly reduce FP error for a given block size, which allows larger block sizes to be used and reduced computation.
机译:受欢迎的深度神经网络(DNN)花费大部分执行时间计算卷积。 Winograd算法系列可以大大减少所需的算术运算次数,并在许多DNN软件框架中使用。但是,性能增益是达到浮点(FP)数值准确性的降低的代价。在本文中,我们分析了最坏情况的FP误差并估算了算法的规范和调节。我们展示了纽约州的卷积尺寸呈指数级增长。此外,修改算法的误差略低但仍然是指数。我们提出了几种降低FP误差的方法。我们提出了一种基于霍夫曼编码的规范评估条件,减少了求和误差。我们在实验上研究了抽样“点”的选择,并为最重要的尺寸找到了经验的好点。我们确定与好点相关的主要因素。此外,我们探讨了减少FP误差的其他方法,包括混合精度卷积,以及DNN通道的成对求和。使用我们的方法,我们可以显着降低给定块大小的FP误差,这允许使用更大的块尺寸和减少计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号