首页> 外文期刊>ACM transactions on mathematical software >Improving the Flexibility and Robustness of Model-based Derivative-free Optimization Solvers
【24h】

Improving the Flexibility and Robustness of Model-based Derivative-free Optimization Solvers

机译:提高基于模型的无导数优化求解器的灵活性和鲁棒性

获取原文
获取原文并翻译 | 示例

摘要

We present two software packages for derivative-free optimization (DFO): DFO-LS for nonlinear least-squares problems and Py-BOBYQA for general objectives, both with optional bound constraints. Inspired by the Gauss-Newton method, DFO-LS constructs simplified linear regression models for the residuals and allows flexible initialization for expensive problems, whereby it can begin making progress after as few as two objective evaluations. Numerical results show DFO-LS can gain reasonable progress on some medium-scale problems with fewer objective evaluations than is needed for one gradient evaluation. DFO-LS has improved robustness to noise, allowing sample averaging, regression-based model construction, and multiple restart strategies with an auto-detection mechanism. Our extensive numerical experimentation shows that restarting the solver when stagnation is detected is a cheap and effective mechanism for achieving robustness, with superior performance over sampling and regression techniques. The package Py-BOBYQA is a Python implementation of BOBYQA (Powell 2009), with novel features such as the implementation of robustness to noise strategies. Our numerical experiments show that Py-BOBYQA is comparable to or better than existing general DFO solvers for noisy problems. In our comparisons, we introduce an adaptive accuracy measure for data profiles of noisy functions, striking a balance between measuring the true and the noisy objective improvement.
机译:我们提供了两个用于无导数优化(DFO)的软件包:用于非线性最小二乘问题的DFO-LS和用于一般目标的Py-BOBYQA,均具有可选的绑定约束。在高斯-牛顿法的启发下,DFO-LS为残差构造了简化的线性回归模型,并允许对昂贵的问题进行灵活的初始化,因此,经过最少两次客观评估,它便可以开始取得进展。数值结果表明,DFO-LS可以在某些中等规模的问题上取得合理的进展,而客观评估要少于一次梯度评估所需的客观评估。 DFO-LS改进了抗噪声能力,允许样本平均,基于回归的模型构建以及具有自动检测机制的多种重启策略。我们广泛的数值实验表明,当检测到停滞时重新启动求解器是一种实现鲁棒性的廉价有效方法,其性能优于采样和回归技术。 Py-BOBYQA软件包是BOBYQA的Python实现(Powell 2009),具有新颖的功能,例如对噪声策略的鲁棒性。我们的数值实验表明,Py-BOBYQA在噪声问题方面可与现有的一般DFO解决方案相媲美或更好。在我们的比较中,我们针对噪声函数的数据配置文件引入了一种自适应精度度量,力求在测量真实和噪声客观改进之间取得平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号