首页> 外文期刊>ACM transactions on mathematical software >An Efficient Overloaded Implementation of Forward Mode Automatic Differentiation in MATLAB
【24h】

An Efficient Overloaded Implementation of Forward Mode Automatic Differentiation in MATLAB

机译:MATLAB中前向模式自动微分的有效重载实现

获取原文
获取原文并翻译 | 示例

摘要

The MAD package described here facilitates the evaluation of first derivatives of multidimensional functions that are defined by computer codes written in MATLAB. The underlying algorithm is the well-known forward mode of automatic differentiation implemented via operator overloading on variables of the class f mad. The main distinguishing feature of this MATLAB implementation is the separation of the linear combination of derivative vectors into a separate derivative vector class derivvec. This allows for the straightforward performance optimization of the overall package. Additionally, by internally using a matrix (two-dimensional) representation of arbitrary dimension directional derivatives, we may utilize MATLAB's sparse matrix class to propagate sparse directional derivatives for MATLAB code which uses arbitrary dimension arrays. On several examples, the package is shown to be more efficient than Verma's ADMAT package [Verma 1998a].
机译:此处描述的MAD软件包有助于评估由MATLAB中编写的计算机代码定义的多维函数的一阶导数。底层算法是通过对类型mad的变量进行运算符重载实现的众所周知的自动微分正向模式。此MATLAB实现的主要区别特征是将导数向量的线性组合分离为单独的导数向量类导数。这样可以对整个程序包进行直接的性能优化。另外,通过在内部使用任意维方向导数的矩阵(二维)表示形式,我们可以利用MATLAB的稀疏矩阵类来传播使用任意维数组的MATLAB代码的稀疏方向导数。在几个示例中,该软件包比Verma的ADMAT软件包[Verma 1998a]更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号