首页> 外文期刊>ACM transactions on mathematical software >Algorithm 863: L2WPMA, a Fortran 77 Package for Weighted Least-Squares Piecewise Monotonic Data Approximation
【24h】

Algorithm 863: L2WPMA, a Fortran 77 Package for Weighted Least-Squares Piecewise Monotonic Data Approximation

机译:算法863:L2WPMA,Fortran 77软件包,用于加权最小二乘分段单调数据逼近

获取原文
获取原文并翻译 | 示例

摘要

Fortran software is developed that calculates a best piecewise monotonic approximation to n univariate data contaminated by random errors. The underlying method minimizes the weighted sum of the squares of the errors by requiring k - 1 sign changes in the first divided differences of the approximation, where k is a given positive integer. Hence, the piecewise linear interpolant to the fit consists of k monotonic sections, alternately increasing and decreasing. This calculation can have about O(n~k) local minima, because the positions of the turning points of the fit are integer variables of the problem. The method, however, by employing a dynamic programming technique divides the data into at most k disjoint sets of adjacent data and solves a k = 1 problem (monotonic fit or isotonic regression) for each set. So it calculates efficiently a global solution in only O(nσ + kσ~2) computer operations when k ≥ 3, where σ is the number of local minima of the data, always bounded by n/2. This complexity reduces to only O(n) when k = 1 or k = 2 (unimodal case). At the end of the calculation a spline representation of the solution and the corresponding Lagrange multipliers are provided. The software package has been tested on a variety of data sets showing a performance that does provide in practice shorter computation times than the complexity indicates in theory. An application of the method on identifying turning points and monotonic trends of data from 1947-1996 on the U.K. pound over the U.S. dollar exchange rate is presented. Generally, the method may have useful applications as, for example, in estimating the turning points of a function from some noisy measurements of its values, or in image and signal processing, or in providing a preliminary or complementary smoothing phase to further analyses of the data.
机译:开发了Fortran软件,该软件可以对n个由随机误差污染的单变量数据计算最佳的分段单调近似。基本方法通过要求近似值的第一个除法差中的k-1个符号变化来最小化误差平方的加权和,其中k是给定的正整数。因此,拟合的分段线性插值由k个单调截面组成,交替增大和减小。该计算可以具有大约O(n〜k)个局部最小值,因为拟合的转折点位置是问题的整数变量。但是,该方法通过采用动态编程技术将数据最多分为k个不相邻的相邻数据集,并为每个数据集解决了k = 1问题(单调拟合或等张回归)。因此,当k≥3时,它仅在O(nσ+kσ〜2)个计算机操作中有效地计算全局解,其中σ是数据的局部最小值的个数,始终以n / 2为界。当k = 1或k = 2(单峰情况)时,此复杂度降低为仅O(n)。在计算结束时,提供了解决方案的样条表示法和相应的拉格朗日乘数。该软件包已在各种数据集上进行了测试,显示出在实践中确实提供了比理论上表明的复杂度短的计算时间的性能。介绍了该方法在识别1947-1996年英镑兑美元汇率数据的拐点和单调趋势中的应用。通常,该方法可以具有有用的应用,例如,从一些嘈杂的测量值估计函数的转折点,或者在图像和信号处理中,或者在提供初步的或补充的平滑阶段以进一步分析该函数。数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号