首页> 外文期刊>ACM transactions on mathematical software >A Fast and Robust Mixed-Precision Solver for the Solution of Sparse Symmetric Linear Systems
【24h】

A Fast and Robust Mixed-Precision Solver for the Solution of Sparse Symmetric Linear Systems

机译:一种快速,鲁棒的混合精度求解器,用于稀疏对称线性系统的求解

获取原文
获取原文并翻译 | 示例

摘要

On many current and emerging computing architectures, single-precision calculations are at least twice as fast as double-precision calculations. In addition, the use of single precision may reduce pressure on memory bandwidth. The penalty for using single precision for the solution of linear systems is a potential loss of accuracy in the computed solutions. For sparse linear systems, the use of mixed precision in which double-precision iterative methods are preconditioned by a single-precision factorization can enable the recovery of high-precision solutions more quickly and use less memory than a sparse direct solver run using double-precision arithmetic. In this article, we consider the use of single precision within direct solvers for sparse symmetric linear systems, exploiting both the reduction in memory requirements and the performance gains. We develop a practical algorithm to apply a mixed-precision approach and suggest parameters and techniques to minimize the number of solves required by the iterative recovery process. These experiments provide the basis for our new code HSL_MA79—a fast, robust, mixed-precision sparse symmetric solver that is included in the mathematical software library HSL.
机译:在许多当前和新兴的计算体系结构中,单精度计算的速度至少是双精度计算速度的两倍。此外,使用单精度可以减少内存带宽的压力。在线性系统的解中使用单精度的代价是在计算的解中潜在的精度损失。对于稀疏线性系统,使用通过单精度分解对双精度迭代方法进行预处理的混合精度,可以比使用双精度的稀疏直接求解器更快地恢复高精度解决方案,并使用更少的内存。算术。在本文中,我们考虑在稀疏对称线性系统的直接求解器中使用单精度,同时利用内存需求的减少和性能提升。我们开发了一种适用于混合精度方法的实用算法,并提出了参数和技术,以最大程度地减少迭代恢复过程所需的求解次数。这些实验为我们的新代码HSL_MA79提供了基础,该代码是数学软件库HSL中包含的快速,鲁棒,混合精度的稀疏对称求解器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号