首页> 外文期刊>ACM transactions on mathematical software >Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing Sparse QR Factorization
【24h】

Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing Sparse QR Factorization

机译:算法915,SuiteSparseQR:多正面多线程秩揭示稀疏QR因式分解

获取原文
获取原文并翻译 | 示例

摘要

SuiteSparseQR is a sparse QR factorization package based on the multifrontal method. Within each frontal matrix, LAPACK and the multithreaded BLAS enable the method to obtain high performance on multicore architectures. Parallelism across different frontal matrices is handled with Intel's Threading Building Blocks library. The symbolic analysis and ordering phase pre-eliminates singletons by permuting the input matrix A into the form [R_11 R_12; 0 A_22] where R_11 is upper triangular with diagonal entries above a given tolerance. Next, the fill-reducing ordering, column elimination tree, and frontal matrix structures are found without requiring the formation of the pattern of A~T A Approximate rank-detection is performed within each frontal matrix using Heath's method. While Heath's method is not always exact, it has the advantage of not requiring column pivoting and thus does not interfere with the fill-reducing ordering. For sufficiently large problems, the resulting sparse QR factorization obtains a substantial fraction of the theoretical peak performance of a multicore computer.
机译:SuiteSparseQR是基于多前沿方法的稀疏QR因式分解软件包。在每个正面矩阵中,LAPACK和多线程BLAS使该方法在多核体系结构上获得高性能。英特尔的线程构建模块库可处理不同正面矩阵之间的并行性。符号分析和排序阶段通过将输入矩阵A置换为[R_11 R_12; [0 A_22],其中R_11是上三角形,对角线入口高于给定公差。接下来,在不需要形成A〜T的图案的情况下,找到了减少填充的排序,列消除树和额叶矩阵结构。使用希思方法在每个额叶矩阵中执行近似秩检测。尽管Heath的方法并不总是精确的,但它的优点是不需要进行列枢转,因此不会干扰减少填充的顺序。对于足够大的问题,所得的稀疏QR因式分解获得了多核计算机理论峰值性能的很大一部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号