首页> 外文期刊>ACM transactions on mathematical software >Polar Affine Arithmetic: Optimal Affine Approximation and Operation Development for Computation in Polar Form Under Uncertainty
【24h】

Polar Affine Arithmetic: Optimal Affine Approximation and Operation Development for Computation in Polar Form Under Uncertainty

机译:极坐标仿射算法:不确定情况下极坐标形式的最优仿射近似和运算开发

获取原文
获取原文并翻译 | 示例
       

摘要

Uncertainties practically arise from numerous factors, such as ambiguous information, inaccurate model, and environment disturbance. Interval arithmetic has emerged to solve problems with uncertain parameters, especially in the computational process where only the upper and lower bounds of parameters can be ascertained. In rectangular coordinate systems, the basic interval operations and improved interval algorithms have been developed in the numerical analysis. However, in polar coordinate systems, interval arithmetic still suffers from issues of complex computation and overestimation. This article defines a polar affine variable and develops a polar affine arithmetic (PAA) that extends affine arithmetic to the polar coordinate systems, which performs better in many aspects than the corresponding polar interval arithmetic (PIA). Basic arithmetic operations are developed based on the complex affine arithmetic. The Chebyshev approximation theory and the min-range approximation theory are used to identify the best affine approximation. PAA can accurately keep track of the interdependency among multiple variables throughout the calculation procedure, which prominently reduces the solution conservativeness. Numerical examples implemented inMATLAB programs show that, compared with benchmark results from the Monte Carlo method, the proposed PAA ensures completeness of the exact solution and presents a more compact solution region than PIA when dependency exists in the calculation process. Meanwhile, a comparison of affine arithmetic in polar and rectangular coordinates is presented. An application of PAA in circuit analysis is quantitatively presented and potential applications in other research fields involving complex variables in polar form will be gradually developed.
机译:不确定性实际上是由许多因素引起的,例如信息不明确,模型不正确以及环境干扰。区间算术已经出现,以解决参数不确定的问题,尤其是在只能确定参数上下限的计算过程中。在直角坐标系中,数值分析已经开发出基本的区间运算和改进的区间算法。然而,在极坐标系中,区间算术仍然遭受复杂的计算和高估的问题。本文定义了一个极性仿射变量,并开发了一种仿射算术(PAA),它将仿射算术扩展到极坐标系,在许多方面都比相应的极距算术(PIA)表现更好。基于复仿射算法开发了基本的算术运算。 Chebyshev逼近理论和最小范围逼近理论用于确定最佳仿射逼近。 PAA可以在整个计算过程中准确跟踪多个变量之间的相互依赖性,从而显着降低了解决方案的保守性。在MATLAB程序中实现的数值示例表明,与蒙特卡洛方法的基准结果相比,所提出的PAA确保精确解的完整性,并且在计算过程中存在依赖性时,与PIA相比,它提供了更紧凑的解区域。同时,提出了极坐标和直角坐标下仿射算法的比较。定量介绍了PAA在电路分析中的应用,并将逐步开发在涉及极性形式的复杂变量的其他研究领域中的潜在应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号