首页> 外文期刊>ACM transactions on mathematical software >ShearLab 3D: Faithful Digital Shearlet Transforms Based on Compactly Supported Shearlets
【24h】

ShearLab 3D: Faithful Digital Shearlet Transforms Based on Compactly Supported Shearlets

机译:ShearLab 3D:基于紧密支持的Shearlets的忠实数字Shearlet转换

获取原文
获取原文并翻译 | 示例

摘要

Wavelets and their associated transforms are highly efficient when approximating and analyzing onedimensional signals. However, multivariate signals such as images or videos typically exhibit curvilinear singularities, which wavelets are provably deficient in sparsely approximating and also in analyzing in the sense of, for instance, detecting their direction. Shearlets are a directional representation system extending the wavelet framework, which overcomes those deficiencies. Similar to wavelets, shearlets allow a faithful implementation and fast associated transforms. In this article, we will introduce a comprehensive carefully documented software package coined ShearLab 3D (www.ShearLab.org) and discuss its algorithmic details. This package provides MATLAB code for a novel faithful algorithmic realization of the 2D and 3D shearlet transform (and their inverses) associated with compactly supported universal shearlet systems incorporating the option of using CUDA. We will present extensive numerical experiments in 2D and 3D concerning denoising, inpainting, and feature extraction, comparing the performance of ShearLab 3D with similar transform-based algorithms such as curvelets, contourlets, or surfacelets. In the spirit of reproducible research, all scripts are accessible on www.ShearLab.org.
机译:在逼近和分析一维信号时,小波及其相关的变换非常高效。然而,诸如图像或视频之类的多元信号通常表现出曲线的奇异性,证明小波在稀疏近似以及在例如检测其方向的意义上分析方面是不足的。 Shearlets是扩展小波框架的定向表示系统,可以克服这些缺陷。与小波类似,小波允许忠实的实现和快速关联的变换。在本文中,我们将介绍由ShearLab 3D(www.ShearLab.org)精心编写的全面,精心记录的软件包,并讨论其算法细节。该软件包为2D和3D剪切波变换(及其逆)的新颖忠实算法实现提供了MATLAB代码,该算法实现了紧密支持的通用剪切波系统,并结合了使用CUDA的选项。我们将在2D和3D中进行有关降噪,修复和特征提取的大量数值实验,将ShearLab 3D的性能与类似的基于变换的算法(例如Curvelet,Contourlet或Surfacelet)进行比较。本着可重复研究的精神,所有脚本都可以在www.ShearLab.org上访问。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号