首页> 外文期刊>ACM Transactions on Management Information Systems >A Multi-Disciplinary Perspective for Conducting Artificial Intelligence-enabled Privacy Analytics: Connecting Data, Algorithms, and Systems
【24h】

A Multi-Disciplinary Perspective for Conducting Artificial Intelligence-enabled Privacy Analytics: Connecting Data, Algorithms, and Systems

机译:用于进行人工智能的隐私分析的多学科视角:连接数据,算法和系统

获取原文
获取原文并翻译 | 示例

摘要

Events such as Facebook-Cambridge Analytica scandal and data aggregation efforts by technology providers have illustrated how fragile modern society is to privacy violations. Internationally recognized entities such as the National Science Foundation (NSF) have indicated that Artificial Intelligence (AI)-enabled models, artifacts, and systems can efficiently and effectively sift through large quantities of data from legal documents, social media, Dark Web sites, and other sources to curb privacy violations. Yet considerable efforts are still required for understanding prevailing data sources, systematically developing AI-enabled privacy analytics to tackle emerging challenges, and deploying systems to address critical privacy needs. To this end, we provide an overview of prevailing data sources that can support AI-enabled privacy analytics; a multi-disciplinary research framework that connects data, algorithms, and systems to tackle emerging AI-enabled privacy analytics challenges such as entity resolution, privacy assistance systems, privacy risk modeling, and more; a summary of selected funding sources to support high-impact privacy analytics research; and an overview of prevailing conference and journal venues that can be leveraged to share and archive privacy analytics research. We conclude this paper with an introduction of the papers included in this special issue.
机译:技术提供商的Facebook-Cambridge Analytica Scandal和数据聚合努力等事件表明了现代社会如何脆弱违规。国家科学基金会(NSF)等国际认可的实体表明,人工智能(AI) - 简称的模型,工件和系统可以通过来自法律文件,社交媒体,暗网站的大量数据有效地筛选,以及其他来源遏制隐私违规行为。仍然需要相当大的努力来了解普遍的数据源,系统地开发启用AI的隐私分析以解决新兴挑战,并部署系统以解决关键的隐私需求。为此,我们提供了可以支持启用AI的隐私分析的现行数据源的概述;一个多学科研究框架,可以连接数据,算法和系统来解决新兴的AI的隐私分析挑战,如实体解析,隐私援助系统,隐私风险建模等;选择资金来源的摘要,以支持高影响隐私分析研究;可以利用普遍会议和期刊场所的概述,可以利用分享和归档隐私分析研究。我们通过引入本特殊问题的论文结束了本文。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号