首页> 外文期刊>ACM Transactions on Management Information Systems >Edge-Based Intrusion Detection for IoT devices
【24h】

Edge-Based Intrusion Detection for IoT devices

机译:IOT设备的边缘入侵检测

获取原文
获取原文并翻译 | 示例

摘要

As the Internet of Things (IoT) is estimated to grow to 25 billion by 2021, there is a need for an effective and efficient Intrusion Detection System (IDS) for IoT devices. Traditional network-based IDSs are unable to efficiently detect IoT malware and new evolving forms of attacks like file-less attacks. In this article, we present a system level Device-Edge split IDS for IoT devices. Our IDS profiles IoT devices according to their "behavior" using system-level information like running process parameters and their system calls in an autonomous, efficient, and scalable manner and then detects anomalous behavior indicative of intrusions. The modular design of our IDS along with a unique device-edge split architecture allows for effective attack detection with minimal overhead on the IoT devices. We have extensively evaluated our system using a dataset of 3,973 traditional IoT malware samples and 8 types of sophisticated file-less attacks recently observed against IoT devices in our testbed. We report the evaluation results in terms of detection efficiency and computational.
机译:由于事物互联网(IOT)估计到2021年的增长率为250亿,因此需要一种用于IOT设备的有效和有效的入侵检测系统(IDS)。基于传统的基于网络的IDS无法有效地检测IOT恶意软件和更新的攻击形式,如文件更少的攻击。在本文中,我们为IOT设备提供了一个系统级别设备边缘分离ID。我们的IDS根据自己的“行为”配置文件段落设备,其使用系统级信息,如运行进程参数及其系统调用,以自主,高效和可扩展的方式,然后检测指示入侵的异常行为。我们的ID的模块化设计以及独特的设备边缘分离架构允许有效的攻击检测,在物联网设备上具有最小的开销。我们使用3,973个传统的物联网恶意软件样本的数据集进行了广泛的系统,并且最近在我们的测试用IOT设备上观察到了8种复杂的文件攻击。我们在检测效率和计算方面报告评估结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号