首页> 外文期刊>ACM Transactions on Management Information Systems >A Survey of Link Recommendation for Social Networks: Methods, Theoretical Foundations, and Future Research Directions
【24h】

A Survey of Link Recommendation for Social Networks: Methods, Theoretical Foundations, and Future Research Directions

机译:社交网络链接推荐调查:方法,理论基础和未来研究方向

获取原文
获取原文并翻译 | 示例

摘要

Link recommendation has attracted significant attention from both industry practitioners and academic researchers. In industry, link recommendation has become a standard and most important feature in online social networks, prominent examples of which include "People You May Know" on Linkedln and "You May Know" on Google +. In academia, link recommendation has been and remains a highly active research area. This article surveys state-of-the-art link recommendation methods, which can be broadly categorized into learning-based methods and proximity-based methods. We further identify social and economic theories, such as social interaction theory, that underlie these methods and explain from a theoretical perspective why a link recommendation method works. Finally, we propose to extend link recommendation research in several directions that include utility-based link recommendation, diversity of link recommendation, link recommendation from incomplete data, and experimental study of link recommendation.
机译:链接推荐已引起行业从业者和学术研究人员的极大关注。在行业中,链接推荐已成为在线社交网络中的标准且最重要的功能,其中突出的例子包括Linkedln上的“您可能认识的人”和Google +上的“您可能认识的人”。在学术界,链接推荐一直是并且仍然是一个非常活跃的研究领域。本文概述了最新的链接推荐方法,可以将其大致分为基于学习的方法和基于接近度的方法。我们进一步确定了社会和经济理论,例如社会互动理论,这些理论是这些方法的基础,并从理论角度解释了链接推荐方法为何有效。最后,我们建议在多个方向上扩展链接推荐研究,包括基于实用程序的链接推荐,链接推荐的多样性,来自不完整数据的链接推荐以及链接推荐的实验研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号