首页> 外文期刊>ACM transactions on knowledge discovery from data >Side Information Fusion for Recommender Systems over Heterogeneous Information Network
【24h】

Side Information Fusion for Recommender Systems over Heterogeneous Information Network

机译:异构信息网络推荐系统的侧面信息融合

获取原文
获取原文并翻译 | 示例

摘要

Collaborative filtering (CF) has been one of the most important and popular recommendationmethods, which aims at predicting users' preferences (ratings) based on their past behaviors. Recently, various types of side information beyond the explicit ratings users give to items, such as social connections among users and metadata of items, have been introduced into CF and shown to be useful for improving recommendation performance. However, previous works process different types of information separately, thus failing to capture the correlations that might exist across them. To address this problem, in this work, we study the application of heterogeneous information network (HIN), which offers a unifying and flexible representation of different types of side information, to enhance CF-based recommendation methods. However, we face challenging issues in HIN-based recommendation, i.e., how to capture similarities of complex semantics between users and items in a HIN, and how to effectively fuse these similarities to improve final recommendation performance. To address these issues, we apply metagraph to similarity computation and solve the information fusion problem with a "matrix factorization (MF) + factorization machine (FM)" framework. For the MF part, we obtain the user-item similarity matrix from each metagraph and then apply low-rank matrix approximation to obtain latent features for both users and items. For the FM part, we apply FM with Group lasso (FMG) on the features obtained from the MF part to train the recommending model and, at the same time, identify the useful metagraphs. Besides FMG, a two-stage method, we further propose an end-to-end method, hierarchical attention fusing, to fuse metagraph-based similarities for the final recommendation. Experimental results on four large real-world datasets show that the two proposed frameworks significantly outperform existing state-of-the-art methods in terms of recommendation performance.
机译:协作过滤(CF)是最重要和最受欢迎的推荐方法之一,旨在根据其过去的行为来预测用户的偏好(评级)。最近,已经将不同类型的侧面信息超出用户提供给用户和项目的用户和元数据的社交连接,例如,在CF中被引入CF,并显示可用于提高推荐性能。然而,以前的作品分别处理不同类型的信息,因此无法捕获它们之间可能存在的相关性。为了解决这个问题,在这项工作中,我们研究了异构信息网络(HIN)的应用,它提供了不同类型的侧面信息的统一和灵活的表示,以增强基于CF的推荐方法。然而,我们面临着基于HIN的建议的具有挑战性的问题,即如何在HIN中捕获用户和物品之间的复杂语义的相似性,以及如何有效地融合这些相似之处以提高最终推荐性能。为了解决这些问题,我们将Metagraph应用于相似性计算,并解决了“矩阵分解(MF)+分解机(FM)”框架的信息融合问题。对于MF部分,我们从每个Metabraph获得用户项相似矩阵,然后应用低秩矩阵近似以获得用户和项目的潜在特征。对于FM部件,我们将FM与Group Lasso(FMG)应用于从MF部件获得的特征,以培训推荐模型,同时识别有用的Metagraphs。除了FMG,一项两级方法,我们还提出了一种端到端的方法,分层关注融合,以熔断鉴定基于鉴定的相似之处。四个大型现实数据集的实验结果表明,两种拟议的框架在推荐绩效方面显着优于现有的最先进的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号