首页> 外文期刊>ACM transactions on knowledge discovery from data >Neural Networks for Entity Matching: A Survey
【24h】

Neural Networks for Entity Matching: A Survey

机译:实体匹配的神经网络:调查

获取原文
获取原文并翻译 | 示例

摘要

Entity matching is the problem of identifying which records refer to the same real-world entity. It has been actively researched for decades, and a variety of different approaches have been developed. Even today, it remains a challenging problem, and there is still generous room for improvement. In recent years, we have seen new methods based upon deep learning techniques for natural language processing emerge.In this survey, we present howneural networks have been used for entity matching. Specifically, we identify which steps of the entity matching process existing work have targeted using neural networks, and provide an overview of the different techniques used at each step. We also discuss contributions from deep learning in entity matching compared to traditional methods, and propose a taxonomy of deep neural networks for entity matching.
机译:实体匹配是识别哪些记录引用相同的真实实体的问题。 已经积极研究了几十年,已经开发了各种不同的方法。 即使在今天,它仍然是一个具有挑战性的问题,而且还有慷慨的改善室。 近年来,我们已经看到了基于自然语言处理的深度学习技术的新方法。在此调查中,我们呈现出Howneural网络已被用于实体匹配。 具体地,我们识别实体匹配过程的哪些步骤现有工作已经使用神经网络针对于每个步骤中使用的不同技术的概述。 与传统方法相比,我们还讨论了实体匹配中深入学习的贡献,并提出了一个用于实体匹配的深神经网络的分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号