首页> 外文期刊>ACM transactions on knowledge discovery from data >Trajectory Outlier Detection: New Problems and Solutions for Smart Cities
【24h】

Trajectory Outlier Detection: New Problems and Solutions for Smart Cities

机译:轨迹异常检测:智能城市的新问题和解决方案

获取原文
获取原文并翻译 | 示例

摘要

This article introduces two new problems related to trajectory outlier detection: (1) group trajectory outlier (GTO) detection and (2) deviation point detection for both individual and group of trajectory outliers. Five algorithms are proposed for the first problem by adapting DBSCAN, k nearest neighbors (kNN), and feature selection (FS). DBSCAN-GTO first applies DBSCAN to derive the micro clusters, which are considered as potential candidates. A pruning strategy based on density computation measure is then suggested to find the group of trajectory outliers. kNN-GTO recursively derives the trajectory candidates from the individual trajectory outliers and prunes them based on their density. The overall process is repeated for all individual trajectory outliers. FS-GTO considers the set of individual trajectory outliers as the set of all features, while the FS process is used to retrieve the group of trajectory outliers. The proposed algorithms are improved by incorporating ensemble learning and high-performance computing during the detection process. Moreover, we propose a general two-phase-based algorithm for detecting the deviation points, as well as a version for graphic processing units implementation using sliding windows. Experiments on a real trajectory dataset have been carried out to demonstrate the performance of the proposed approaches. The results show that they can efficiently identify useful patterns represented by group of trajectory outliers, deviation points, and that they outperform the baseline group detection algorithms.
机译:本文介绍了与轨迹异常检测相关的两个新问题:(1)组轨迹异常值(GTO)检测和(2)轨迹异常值的个体和组的偏差点检测。通过调整DBSCAN,K最近邻居(KNN)和特征选择(FS)来提出五个算法。 DBSCAN-GTO首先应用DBSCAN来得出被认为是潜在候选人的微集群。然后建议基于密度计算措施的修剪策略来查找轨迹异常值组。 KNN-GTO递归地从各个轨迹异常值源自轨迹候选者,并根据密度剪切它们。对所有单个轨迹异常值重复整个过程。 FS-GTO将该组单个轨迹异常值作为所有功能集,而FS进程用于检索轨迹异常值组。通过在检测过程中结合集合学习和高性能计算来改善所提出的算法。此外,我们提出了一种用于检测偏差点的一般两相基算法,以及使用滑动窗口实现图形处理单元实现的版本。已经进行了实际轨迹数据集的实验,以证明提出的方法的表现。结果表明,它们可以有效地识别由轨迹异常值组,偏差点的组表示的有用模式,以及它们优于基线组检测算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号